Near-infrared-visual (NIR-VIS) heterogeneous face recognition (HFR) aims to match NIR face images with the corresponding VIS ones. It is a challenging task due to the sensing gaps among different modalities. Occlusions in the input face images make the task extremely complex. To tackle these problems, we present a Saliency Search Network (SSN) to extract domain-invariant identity features. We propose to automatically search the efficient parts of face images in a modality-aware man- ner, and remove redundant information. Moreover, the searching process is guided by an information bottleneck network, which mitigates the overfitting problems caused by small datasets. Extensive experiments on both complete and partial NIR-VIS HFR on multiple datasets demonstrate the effectiveness and robustness of the proposed method to modality discrepancy and occlusions.