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Abstract
This work aims to learn a high-quality text-to-video (T2V) generative model by leveraging a pre-trained text-to-image (T2I)
model as a basis. It is a highly desirable yet challenging task to simultaneously (a) accomplish the synthesis of visually realistic
and temporally coherent videos while (b) preserving the strong creative generation nature of the pre-trained T2I model. To this
end, we propose LaVie, an integrated video generation framework that operates on cascaded video latent diffusion models,
comprising a base T2V model, a temporal interpolation model, and a video super-resolution model. Our key insights are
two-fold: (1) We reveal that the incorporation of simple temporal self-attentions, coupled with rotary positional encoding,
adequately captures the temporal correlations inherent in video data. (2) Additionally, we validate that the process of joint
image-video fine-tuning plays a pivotal role in producing high-quality and creative outcomes. To enhance the performance of
LaVie, we contribute a comprehensive and diverse video dataset named Vimeo25M, consisting of 25 million text-video pairs
that prioritize quality, diversity, and aesthetic appeal. Extensive experiments demonstrate that LaVie achieves state-of-the-art
performance both quantitatively and qualitatively. Furthermore, we showcase the versatility of pre-trained LaVie models
in various long video generation and personalized video synthesis applications. Project page: https://github.com/Vchitect/
LaVie/.
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1 Introduction

With the remarkable breakthroughs achieved by Diffusion
Models (DMs) (Hoet al., 2020; Song et al., 2021a, b) in image
synthesis, the generation of photorealistic images from text
descriptions (T2I) (Ramesh et al., 2021, 2022; Saharia et
al., 2022; Balaji et al., 2022; Rombach et al., 2022) has taken
center stage, finding applications in various image processing
domain such as imageoutpainting (Ramesh et al., 2022), edit-
ing (Zhang & Agrawala, 2023; Mokady et al., 2022; Parmar
et al., 2023; Huang et al., 2023) and enhancement (Saharia et
al., 2022; Wang et al., 2023). Building upon the successes of
T2I models, there has been a growing interest in extending
these techniques to the synthesis of videos controlled by text
inputs (T2V) (Singer et al., 2023; Ho et al., 2022; Blattmann
et al., 2023; Zhou et al., 2022; He et al., 2022), driven by
their potential applications in domains such as filmmaking,
video games, and artistic creation.
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However, training an entire T2V system from scratch (Ho
et al., 2022) poses significant challenges as it requires exten-
sive computational resources to optimize the entire network
for learning spatio-temporal joint distribution. An alternative
approach (Singer et al., 2023; Blattmann et al., 2023; Zhou et
al., 2022; He et al., 2022) leverages the prior spatial knowl-
edge from pre-trained T2I models for faster convergence to
adapt video data, which aims to expedite the training process
and efficiently achieve high-quality results.However, in prac-
tice, finding the right balance among video quality, training
cost, and model compositionality still remains challenging
as it required careful design of model architecture, train-
ing strategies and the collection of high-quality text-video
datasets.

To this end, we introduce LaVie, an integrated video
generation framework (with a total number of 3B parame-
ters) that operates on cascaded video latent diffusion models.
LaVie is a text-to-video foundation model built based on a
pre-trained T2I model (i.e. Stable Diffusion (Rombach et al.,
2022)), aiming to synthesize visually realistic and temporally
coherent videos while preserving the strong creative gener-
ation nature of the pre-trained T2I model. Our key insights
are two-fold: 1) simple temporal self-attention coupled with
RoPE (Su et al., 2021) adequately captures temporal corre-
lations inherent in video data. More complex architectural
design only results in marginal visual improvements to the
generated outcomes. 2) Joint image-video fine-tuning plays
a key role in producing high-quality and creative results.
Directly fine-tuning on video dataset severely hampers the
concept-mixing ability of the model, leading to catastrophic
forgetting and the gradual vanishing of learned prior knowl-
edge. Moreover, joint image-video fine-tuning facilitates
large-scale knowledge transferring from images to videos,
encompassing scenes, styles, and characters. In addition,
we found that current publicly available text-video dataset
WebVid10M (Bain et al., 2021), is insufficient to support
T2V task due to its low resolution and watermark-centered
videos. Therefore, to enhance the performance of LaVie, we
introduce a novel text-video dataset Vimeo25M which con-
sists of 25 million high-resolution videos (> 720p) with text
descriptions. Our experiments demonstrate that training on
Vimeo25M substantially boosts the performance of LaVie
and empowers it to produce superior results in terms of qual-
ity, diversity, and aesthetic appeal (see Fig. 1 and Fig. 2).

2 RelatedWork

Unconditional video generation endeavors to generate videos
by comprehensively learning the underlying distribution of
the training dataset. Previous works have leveraged various
types of deep generative models, including GANs (Goodfel-
low et al., 2014; Radford et al., 2015; Brock et al., 2019;

Karras et al., 2019, 2020; Vondrick et al., 2016; Saito et
al., 2017; Tulyakov et al., 2018; WANG et al., 2020; Wang
et al., 2020; Wang, 2021; Wang et al., 2021; Clark et al.,
2019; Brooks et al., 2022; Chen et al., 2020; Yu et al., 2022;
Skorokhodov et al., 2022; Tian et al., 2021; Zhang et al.,
2023), VAEs (Kingma & Welling, 2014; Li & Mandt, 2018;
Bhagat et al., 2020; Xie et al., 2020), and VQ-based models
(Van Den Oord et al., 2017; Esser et al., 2021; Yan et al.,
2021; Ge et al., 2022; Jiang et al., 2023). Recently, a notable
advancement in video generation has been observed with the
emergence ofDiffusionModels (DMs) (Ho et al., 2020; Song
et al., 2021a; Nichol & Dhariwal, 2021), which have demon-
strated remarkable progress in image synthesis (Ramesh et
al., 2021, 2022; Rombach et al., 2022). Building upon this
success, several recent works (Ho et al., 2022;He et al., 2022;
Wang et al., 2023) have explored the application of DMs
for video generation. These works showcase the promis-
ing capability of DMs to model complex video distributions
by integrating spatio-temporal operations into image-based
models, surpassing previous approaches in terms of video
quality. However, learning the entire distribution of video
datasets in an unconditional manner remains highly chal-
lenging. The entanglement of spatial and temporal content
poses difficulties, making it still arduous to obtain satisfac-
tory results.

Text-to-video generation, as a form of conditional video
generation, focuses on the synthesis of high-quality videos
using text descriptions as conditioning inputs. Existing
approaches primarily extend text-to-image models by incor-
porating temporal modules, such as temporal convolutions
and temporal attention, to establish temporal correlations
between video frames.

Notably, previous works (Singer et al., 2023; Ho et al.,
2022; Ge et al., 2023; Blattmann et al., 2023; Zhou et al.,
2022; He et al., 2022; Chen et al., 2024; Zhang et al., 2023;
Blattmann et al., 2023) developed UNet-based text-to-video
diffusion models based on pre-trained text-to-image mod-
els (Ramesh et al., 2021, 2022; Balaji et al., 2022; Rombach
et al., 2022). These approaches follow the standard cascaded
pipeline design and train the entire system on large-scale
video datasets. Other works (Guo et al., 2023; Zhang et
al., 2024) focus on constructing the personalized text-to-
videomodel to partially train temporalmodules which can be
adapted to various different personalized text-to-image mod-
els for personalized video generation. Recently, DiT (Peebles
&Xie, 2023) has started to replace UNet to become the novel
architecture for text-to-image diffusion models (Chen et al.,
2024; Esser et al., 2024). Several latest works (Brooks et al.,
2024;Ma et al., 2024;Gupta et al., 2023; Lu et al., 2023;Yang
et al., 2024) extend such idea on video generation and show
promising results on large-scale text-to-video generation.
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Cinematic shot of Van Gogh’s selfie, Van Gogh style.

A happy panda in space suit walking in the space.

The Bund, Shanghai, with the ship moving on the river, oil painting.

A super cool giant robot in Cyberpunk city, artstation.

A fantasy landscape, trending on artstation, 4k, high resolution.

Fig. 1 Text-to-video samples. LaVie is able to synthesize diverse, creative, high-definition videos with photorealistic and temporal coherent content
by giving text descriptions

3 Preliminary of DiffusionModels

Diffusion models (DMs) (Ho et al., 2020; Song et al.,
2021a, b) aim to learn the underlying data distribution
through a combination of two fundamental processes: dif-
fusion and denoising. Given an input data sample z ∼ p(z),
the diffusion process introduces random noises to construct
a noisy sample zt = αt z + σtε, where ε ∼ N (0, I). This
process is achieved by a Markov chain with T steps, and
the noise scheduler is parametrized by the diffusion-time t ,
characterized by αt and σt . Notably, the logarithmic signal-
to-noise ratio λt = log[α2t/σ 2t] monotonically decreases

over time. In the subsequent denoising stage, ε-prediction
and v-prediction are employed to learn a denoiser function
εθ , which is trained to minimize the mean square error loss
by taking the diffused sample zt as input:

Ez∼p(z), ε∼N (0,1), t

[
‖ε − εθ (zt , t)‖22

]
. (1)

Latent diffusion models (LDMs) (Rombach et al., 2022)
utilize a variational autoencoder architecture, wherein the
encoder E is employed to compress the input data into
low-dimensional latent codes E(z). Diverging from previous
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A corgi’s head depicted as an explosion of a nebula, high quality.

Gwen Stacy reading a book.

Iron Man flying in the sky.

Yoda playing guitar on the stage.

A shark swimming in the ocean.

Fig. 2 Text-to-video samples. LaVie is able to synthesize diverse, creative, high-definition videos with photorealistic and temporal coherent content
by giving text descriptions

methods, LDMs conduct the diffusion and denoising pro-
cesses in the latent space rather than the data space, resulting
in substantial reductions in both training and inference time.
Following the denoising stage, the final output is decoded as
D(z0), representing the reconstructed data. The objective of
LDMs can be formulated as follows:

Ez∼p(z), ε∼N (0,1), t

[
‖ε − εθ (E(zt ), t)‖22

]
. (2)

Our proposedLaVie follows the idea ofLDMs to encode each
video frames into per frame latent code E(z). The diffusion

process is operated in the latent spatio-temporal distribution
space to model latent video distribution.

4 Our Approach

Our proposed framework, LaVie, is a cascaded frame-
work consistingofVideoLatentDiffusionModels (V-LDMs)
conditioned on text descriptions. The overall architecture
of LaVie is depicted in Fig. 3, and it comprises three dis-
tinct networks: a Base T2Vmodel responsible for generating
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Fig. 3 General pipeline. LaVie consists of three modules: a Base T2V
model, a Temporal Interpolation (TI) model, and a Video Super Res-
olution (VSR) model. It also requires Encoder (E) and Decoder (D)
from pretrained VAE. At the inference stage, given a sequence of noise
and a text description, the base model aims to generate key frames
aligning with the prompt and containing temporal correlation. The tem-

poral interpolation model focuses on producing smoother results and
synthesizing richer temporal details. The video super-resolution model
enhances the visual quality aswell as elevates the spatial resolution even
further. Finally, we generate videos at 1280 × 2048 resolution with 61
frames

short, low-resolution key frames, a Temporal Interpolation
(TI) model designed to interpolate the short videos and
increase the frame rate, and a Video Super Resolution (VSR)
model aimed at synthesizing high-definition results from
the low-resolution videos. Each of these models is indi-
vidually trained with text inputs serving as conditioning
information. During the inference stage, given a sequence
of latent noises and a textual prompt, LaVie is capable of
generating a video consisting of 61 frames with a spatial res-
olution of 1280 × 2048 pixels, utilizing the entire system.
In the subsequent sections, we will elaborate on the learning
methodology employed in LaVie, as well as the architectural
design of the models involved.

4.1 Base T2VModel

Given the video dataset pvideo and the image dataset pimage,
we have a T-frame video denoted as v ∈ R

T ×3×H×W , where
v follows the distribution pvideo. Similarly, we have an image
denoted as x ∈ R

3×H×W , where x follows the distribution
pimage. As the original LDM is designed as a 2D UNet and
can only process image data, we introduce two modifica-
tions to model the spatio-temporal distribution. Firstly, for

each 2D convolutional layer, we inflate the pre-trained kernel
to incorporate an additional temporal dimension, resulting
in a pseudo-3D convolutional layer. This inflation process
converts any input tensor with the size B × C × H × W
to B × C × 1 × H × W by introducing an extra tem-
poral axis. Secondly, as illustrated in Fig. 4, we extend
the original transformer block to a Spatio-Temporal Trans-
former (ST-Transformer) by including a temporal attention
layer after each spatial layer. Furthermore, we incorporate
the concept of Rotary Positional Encoding (RoPE) from the
recent LLM (Touvron et al., 2023) to integrate the tempo-
ral attention layer. Unlike previous methods that introduce
an additional Temporal Transformer to model time, our
modification directly applies to the transformer block itself,
resulting in a simpler yet effective approach. Through various
experiments with different designs of the temporal mod-
ule, such as spatio-temporal attention and temporal causal
attention, we observed that increasing the complexity of the
temporal module only marginally improved the results while
significantly increasing model size and training time. There-
fore, we opt to retain the simplest design of the network,
generating videoswith 16 frames at a resolution of 320×512.

Fig. 4 Spatio-temporal module. We show the Transformer block in Stable Diffusion in (a), our proposed ST-Transformer block in (b), and our
joint image-video training scheme in (c)
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The primary objective of the base model is to generate
high-quality key frames while also preserving diversity and
capturing the compositional nature of videos. We aim to
enable our model to synthesize videos aligned with cre-
ative prompts, such as “Cinematic shot of Van Gogh’s
selfie”. However, we observed that fine-tuning solely on
video datasets, even with the initialization from a pre-trained
LDM, fails to achieve this goal due to the phenomenon of
catastrophic forgetting, where previous knowledge is rapidly
forgotten after training for a few epochs. Hence, we apply a
joint fine-tuning approach using both image and video data
to address this issue. In practise, we concatenate M images
along the temporal axis to form a T -frame video and train the
entire base model to optimize the objectives of both the Text-
to-Image (T2I) and Text-to-Video (T2V) tasks (as shown in
Fig. 4 c). Consequently, our training objective consists of
two components: a video loss LV and an image loss LI . The
overall objective can be formulated as:

L = E

[
‖ε − εθ (E(vt ), t, cV )‖22

]
+ (3)

α ∗ E

[
‖ε − εθ (E(xt ), t, cI )‖22

]
, (4)

where cV and cI represent the text descriptions for videos
and images, respectively, and α is the coefficient used to
balance the two losses. By incorporating images into the
fine-tuning process, we observe a significant improvement
in video quality. Furthermore, as demonstrated in Fig. 1,
our approach successfully transfers various concepts from
images to videos, including different styles, scenes, and char-
acters. An additional advantage of our method is that, since
we do not modify the architecture of LDM and jointly train
on both image and video data, the resulting base model is
capable of handling both T2I and T2V tasks, thereby show-
casing the generalizability of our proposed design.

We use two-stage training strategy to train our basemodel.
Firstly, we pre-train the model on large-scale video-text and
image-text datasets towards enabling the model to capture
the diverse spatio-temporal concepts. In the second stage,
we fine-tune the pre-trained model on a relatively smaller-
scale dataset with higher-quality. Similar to Dai et al. (2023),
we found using such strategy is able to further improve the
generated quality.

4.2 Temporal InterpolationModel

Building upon our base T2V model, we introduce a tempo-
ral interpolation network to enhance the smoothness of our
generated videos and synthesize richer temporal details (see
Fig. 5). We accomplish this by training a diffusion UNet,
designed specifically to quadruple the frame rate of the base
video. This network takes a 16-frame base video as input and
produces an upsampled output consisting of 61 frames. Dur-

ing the training phase, we duplicate the base video frames
to match the target frame rate and concatenate them with
the noisy high-frame-rate frames. This combined data is fed
into the diffusion UNet. We train the UNet using the objec-
tive of reconstructing the noise-free high-frame-rate frames,
enabling it to learn the process of denoising and generate the
interpolated frames. At inference time, the base video frames
are concatenated with randomly initialized Gaussian noise.
The diffusion UNet gradually removes this noise through
the denoising process, resulting in the generation of the 61
interpolated frames. Notably, our approach differs from con-
ventional video frame interpolation methods, as each frame
generated through interpolation replaces the corresponding
input frame. In other words, every frame in the output is
newly synthesized, providing a distinct approach compared
to techniques where the input frames remain unchanged
during interpolation. Furthermore, our diffusion UNet is
conditioned on the text prompt, which serves as additional
guidance for the temporal interpolation process, enhancing
the overall quality and coherence of the generated videos.

4.3 Video Super ResolutionModel

To further enhance visual quality and elevate spatial resolu-
tion, we incorporate a video super-resolution (VSR) model
into our video generation pipeline. This involves training
a LDM upsampler, specifically designed to increase the
video resolution to 1280 × 2048. Similar to the base model
described in Sect. 4.1, we leverage a pre-trained diffusion-
based image ×4 upscaler as a prior. To adapt the network
architecture to process video inputs in 3D, we incorporate
an additional temporal dimension, enabling temporal pro-
cessing within the diffusion UNet. Within this network, we
introduce temporal layers, namely temporal attention and a
3D convolutional layer, alongside the existing spatial lay-
ers. These temporal layers contribute to enhancing temporal
coherence in the generated videos. By concatenating the low-
resolution input frames within the latent space, the diffusion
UNet takes into account additional text descriptions andnoise
levels as conditions, which allows for more flexible control
over the texture and quality of the enhanced output.

While the spatial layers in the pre-trained upscaler remain
fixed, our focus lies infine-tuning the inserted temporal layers
in the V-LDM. Inspired by CNN-based super-resolution net-
works (Chan et al., 2022a, b; Zhou et al., 2022, 2020; Jiang et
al., 2021, 2022), ourmodel undergoes patch-wise training on
320×320 patches. By utilizing the low-resolution video as a
strong condition, our upscaler UNet effectively preserves its
intrinsic convolutional characteristics. This allows for effi-
cient training on patches while maintaining the capability to
process inputs of arbitrary sizes. Through the integration of
theVSRmodel, our LaVie framework generates high-quality
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Fig. 5 Inference of temporal interpolation model. At inference time,
we duplicate the base video frames to match the target frame rate and
concatenate them with randomly initialized Gaussian noise. The diffu-

sion UNet gradually removes this noise through the denoising process,
resulting in the generation of the 61 interpolated frames

videos at a 2K resolution (1280×2048), ensuring both visual
excellence and temporal consistency in the final output.

5 Experiments

In this section, we present our experimental settings, encom-
passing datasets and implementation details. Subsequently,
we evaluate our method both qualitatively and quantitatively,
comparing it to state-of-the-art on the zero-shot text-to-video
task.We then conduct an in-depth analysis regarding the effi-
cacy of joint image-video fine-tuning. Next, we showcase
two applications of our method: long video generation and
personalized video synthesis. Finally, we discuss limitations
and potential solutions to improve current approach.

5.1 Datasets

To train our models, we leverage two publicly avail-
able datasets, namely Webvid10M (Bain et al., 2021) and
Laion5B (Schuhmann et al., 2022). However, we encoun-
tered limitations when utilizing WebVid10M for high-
definition video generation, specifically regarding video
resolution, diversity, and aesthetics. Therefore, we curate
a new dataset called Vimeo25M, specifically designed to
enhance the quality of text-to-video generation. By applying
rigorous filtering criteria based on resolution and aesthetic
scores, we obtained a total of 20 million videos and 400 mil-
lion images for training purposes.

Vimeo25M dataset. A collection of 25 million text-video
pairs in high-definition, widescreen, and watermark-free
formats. These pairs are automatically generated using
Videochat (Li et al., 2023). The original videos are sourced
from Vimeo1 and are classified into ten categories: Ads and
Commercials, Animation, Branded Content, Comedy, Docu-
mentary,Experimental,Music,Narrative,Sports, andTravel.
Example videos are shown in Fig. 6. To obtain the dataset,

1 https://vimeo.com

we utilized PySceneDetect2 for scene detection and seg-
mentation of the primary videos. To ensure the quality of
captions, we filtered out captions with less than three words
and excluded video segments with fewer than 16 frames.
Consequently, we obtained a total of 25 million individ-
ual video segments, each representing a single scene. The
statistics of the Vimeo25M dataset, including the distribu-
tion of video categories, the duration of video segments, and
the length of captions, are presented in Fig. 7. The dataset
demonstrates a diverse range of categories, with a relatively
balanced quantity among the majority of categories. More-
over, most videos in the dataset have captions consisting of
approximately 10 words.

We conducted a comparison of the aesthetics score
between theVimeo25Mdataset and theWebVid10Mdataset.
As illustrated in Fig. 8a, approximately 16.89% of the videos
in Vimeo25M received a higher aesthetics score (greater
than 6), surpassing the 7.22% in WebVid10M. In the score
range between 4 and 6, Vimeo25M achieved a percentage of
79.12%,which is also superior to the 72.58% inWebVid10M.
Finally, Fig. 8b depicts a comparison of the spatial reso-
lution between the Vimeo25M and WebVid10M datasets.
It is evident that the majority of videos in the Vimeo25M
dataset possess a higher resolution than those inWebVid10M,
thereby ensuring that the generated results exhibit enhanced
quality.

Our high-quality dataset contains around 2000 video-text
pairs. We filter out data based on aesthetic score, clip score
and video-text alignment.

5.2 Implementation Details

The Autoencoder and LDM of Base T2Vmodel is initialized
from a pretrained Stable Diffusion 1.4. Prior to training, we
preprocess each video to a resolution of 320× 512 and train
using 16 frames per video clip. Additionally, we concatenate
4 images to each video for joint image-video fine-tuning.
To facilitate the fine-tuning process, we employ curriculum

2 https://github.com/Breakthrough/PySceneDetect
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(a) An aerial view of a large estate.

(b) A sunset with clouds in the sky.

Fig. 6 We show three video examples as well as text descriptions from Vimeo25M dataset

Fig. 7 Vimeo25M general information statistics. We show statistics of video categories, clip durations, and caption word lengths in Vimeo25M

(a) Aesthetics score statistics (b) Resolution statistics

Fig. 8 Aesthetics score, video resolution statistics. We compare Vimeo25M with WebVid10M in terms of a aesthetics score and b video spatial
resolution

learning (Bengio et al., 2009). In the initial stage, we uti-
lize WebVid10M as the primary video data source, along
with Laion5B, as the content within these videos is rela-
tively simpler compared to the other dataset. Subsequently,
we gradually introduce Vimeo25M to train the model on
more complex scenes, subjects, and motion. In addition, we
filter out an internal high-quality video-text dataset which
contains 2000 videos for quality fine-tuning.

Temporal Interpolation model is initialized from our pre-
trained base T2V model. In order to accommodate our

concatenated inputs of high and low frame-rate frames, we
extend the architecture by incorporating an additional con-
volutional layer. During training, we utilize WebVid10M
as the primary dataset. In the later stages of training, we
gradually introduce Vimeo25M, which allows us to lever-
age its watermark-free videos, thus assisting in eliminating
watermarks in the interpolated output. While patches of
dimensions 256× 256 are utilized during training, the trained
model can successfully interpolate base videos at a resolution
of 320 × 512 during inference.
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The spatial layers of our VSR model is initialized from
the pre-trained diffusion-based image ×4 upscaler, keep-
ing these layers fixed throughout training. Only the newly
inserted temporal layers, including temporal attention and
3D CNN layers, are trained. Similar to the base model,
we employ the WebVid10M and Laion5B (with resolution
≥ 1024) datasets for joint image-video training. To facili-
tate this, we transform the image data into video clips by
applying random translations to simulate handheld camera
movements. For training purposes, all videos and images
are cropped into patches of size 320×320. Once trained, the
model can effectively process videos of arbitrary sizes, offer-
ing enhanced results.

At inference stage, our base model requires 10 s to pro-
duce a 16-frame video, interpolation model requires 180s
to generate 61 frames, and VSR model requires 6min for
video enhancement. In terms of memory consumption, our
base, interpolation and VSR models require 13GB, 40GB
and 42GB respectively.

5.3 Qualitative Evaluation

Wepresent qualitative results of our approach throughdiverse
text descriptions illustrated in Fig. 1. LaVie demonstrates its
capability to synthesize videos with a wide range of content,
including animals, movie characters, and various objects.
Notably, our model exhibits a strong ability to combine spa-
tial and temporal concepts, as exemplified by the synthesis of
actions like“Yoda playing guitar,”. These results indicate that
our model learns to compose different concepts by capturing
the underlying distribution rather than simply memorizing
the training data.

Furthermore, we compare our generated results with three
state-of-the-art and showcases the visual quality compari-
son in Fig. 9. LaVie outperforms Make-A-Video in terms
of visual fidelity. Regarding the synthesis in the “Van Gogh
style”, we observe that LaVie captures the style more effec-
tively than the other two approaches. We attribute this to
two factors: 1) initialization from a pretrained LDM facili-
tates the learning of spatio-temporal joint distribution, and
2) joint image-video fine-tuning mitigates catastrophic for-
getting observed in Video LDM and enables knowledge
transfer from images to videos more effectively. However,
due to the unavailability of the testing code for the other two
approaches, conducting a systematic and fair comparison is
challenging.

5.4 Quantitative Evaluation

We perform a zero-shot quantitative evaluation on two
benchmark datasets, UCF101 (Soomro et al., 2012) and
MSR-VTT (Chen et al., 2021), to compare our approach
with existing methods. However, due to the time-consuming

nature of sampling a large number of high-definition videos
(e.g., ∼10000) using diffusion models, we limit our eval-
uation to using videos from the base models to reduce
computational duration. Additionally, we observed that cur-
rent evaluation metrics FVD may not fully capture the real
quality of the generated videos. Therefore, to provide a
comprehensive assessment, we conduct a large-scale human
evaluation to compare the performance of our approach with
state-of-the-art. In addition, we leverage a novel video gener-
ation evaluation benchmark suit VBench (Huang et al., 2023)
to thoroughly analyze the generated video quality of LaVie
and state-of-the-art.

Zero-shot Evaluation on UCF101.We evaluate the quality
of the synthesized results onUCF-101 dataset using the FVD,
following the approach of TATS by employing the pretrained
I3D (Carreira & Zisserman, 2017) model as the backbone.
Similar to the methodology proposed in Video LDM, we
utilize class names as text prompts and generate 100 samples
per class, resulting in a total of 10,100 videos. During video
sampling and evaluation, we generate 16 frames per video
with a resolution of 320 × 512. Each frame is then center-
cropped to a square size of 270×270 and resized to 224×224
to fit the I3D model input requirements.

The results, presented in Table 1, demonstrate that our
model outperforms all baseline methods, except for Make-
A-Video. However, it is important to note that we utilize
a smaller training dataset (WebVid10M+Vimeo25M) com-
pared to Make-A-Video, which employs WebVid10M and
HD-VILA-100M for training. Furthermore, in contrast to
Make-A-Video, which manually designs a template sentence
for each class, we directly use the class name as the text
prompt, following the approach of Video LDM. When con-
sidering methods with the same experimental setting, our
approach outperforms the state-of-the-art result of Video
LDM by 24.31, highlighting the superiority of our method
and underscoring the importance of the proposed dataset for
zero-shot video generation (Table 2).

Zero-shot Evaluation on MSR-VTT. For the MSR-VTT
dataset, we conduct our evaluation by randomly selecting one
caption per video from the official test set, resulting in a total
of 2,990 videos. We assess the text-video semantic similar-
ity using the clip similarity (CLIPSIM) metric. To compute
CLIPSIM,we calculate the clip text-image similarity for each
frame, considering the given text prompts, and then calculate
the average score. In this evaluation,we employ theViT-B-32
clip model as the backbone, following the methodology out-
lined in previouswork (Blattmann et al., 2023) to ensure a fair
comparison. Our experimental setup and details are consis-
tent with the previous work. As shown in Table 2, the results
demonstrate that LaVie achieves superior or competitive per-
formance compared to state-of-the-art methods, highlighting
the effectiveness of our proposed training scheme and the uti-
lization of the Vimeo25M dataset. These findings underscore
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the efficacy of our approach in capturing text-video semantic
similarity.

Human Evaluation. Deviating from previous methods
that primarily focus on evaluating general video quality, we
contend that a more nuanced assessment is necessary to

comprehensively evaluate the generated videos from various
perspectives. In light of this, we compare our method with
two existing approaches, VideoCrafter and ModelScope,
leveraging the accessibility of their testing platforms. To con-
duct a thorough evaluation, we enlist the assistance of 30

(a) Make-A-Video (top) & ours (bottom). “Hyper-realistic spaceship landing on mars.”

(b) VideoLDM (top) & ours (bottom). “A car moving on an empty street, rainy evening, Van Gogh painting.”

(c) Imagen Video (top) & ours (bottom). “A cat eating food out of a bowl in style of Van Gogh.”

Fig. 9 Comparison with state-of-the-art methods.We compared to aMake-A-Video, bVideo LDM and c Imagen Video. In each sub-figure, bottom
row shows our result. We compare with Make-A-Video at spatial-resolution 512 × 512 and with the other two methods at 320 × 512
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Table 1 Comparison with SoTA w.r.t. FVD for zero-shot T2V generation on UCF101

Methods Pretrain on image Image generator Resolution FVD (↓)
CogVideo (Chinese) (Hong et al., 2023) No CogView 480 × 480 751.34

CogVideo (English) (Hong et al., 2023) No CogView 480 × 480 701.59

Make-A-Video (Singer et al., 2023) No DALL·E2 256 × 256 367.23

VideoFusion (Luo et al., 2023) Yes DALL·E2 256 × 256 639.90

Magic Video (Zhou et al., 2022) Yes Stable Diffusion 256 × 256 699.00

LVDM (He et al., 2022) Yes Stable Diffusion 256 × 256 641.80

Video LDM (Blattmann et al., 2023) Yes Stable Diffusion 320 × 512 550.61

PYoCo (Ge et al., 2023) Yes eDiff-I 512 × 512 355.19

Ours (w/o Vimeo25M) Yes Stable Diffusion 320 × 512 540.30

Ours Yes Stable Diffusion 320 × 512 350.00

Table 2 Comparison with SoTA
w.r.t. CLIPSIM for zero-shot
T2V generation on MSR-VTT

Methods Zero-Shot CLIPSIM (↑)
GODIVA (Wu et al., 2021) No 0.2402

NÜWA (Wu et al., 2022) No 0.2439

CogVideo (Chinese) (Hong et al., 2023) Yes 0.2614

CogVideo (English) (Hong et al., 2023) Yes 0.2631

Make-A-Video (Singer et al., 2023) Yes 0.3049

VideoLDM (Blattmann et al., 2023) Yes 0.2929

ModelScope (Wang et al., 2023) Yes 0.2930

Ours Yes 0.2949

Table 3 Human Preference on
overall video quality

Metrics Ours > ModelScope Ours > VideoCrafter ModelScope > VideoCrafter

Video quality 75.00% 75.58% 59.10%

Table 4 Human Evaluation on
five pre-defined metrics. Each
number signifies the proportion
of examiners who voted for a
particular category (good,
normal, or bad) out of all votes

VideoCrafter ModelScope Ours
Metrics Bad Normal Good Bad Normal Good Bad Normal Good

Motion Smoothness 0.24 0.58 0.18 0.16 0.53 0.31 0.20 0.45 0.35

Motion Reasonableness 0.53 0.33 0.14 0.37 0.40 0.22 0.40 0.32 0.27

Subject Consistency 0.25 0.40 0.35 0.18 0.34 0.48 0.15 0.26 0.58

Background Consistency 0.10 0.40 0.50 0.08 0.28 0.63 0.06 0.22 0.72

Face/Body/Hand quality 0.69 0.24 0.06 0.51 0.31 0.18 0.46 0.30 0.24

Bold values indicate the best performance

human raters and employ two types of assessments. Firstly,
we ask the raters to compare pairs of videos in three differ-
ent scenarios: ours v.s. ModelScope, ours v.s. VideoCrafter,
and ModelScope v.s. VideoCrafter. Raters are instructed to
evaluate the overall video quality to vote which video in the
pair has better quality. Secondly, we request raters to eval-
uate each video individually using five pre-defined metrics:
motion smoothness, motion reasonableness, subject consis-
tency, background consistency, and face, body, and hand
quality. Raters are required to assign one of three labels,

“good”, “normal”, or “bad” for each metric. All human stud-
ies are conducted without time limitations.

As presented in Tables 3 and 4, our proposed method
surpasses the other two approaches, achieving the highest
preference among human raters. However, it is worth noting
that all three approaches struggle to achieve a satisfactory
score in terms of “motion smoothness” indicating the ongo-
ing challenge of generating coherent and realistic motion.
Furthermore, producing high-quality face, body, and hand
visuals remains challenging.
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Table 5 VBench Evaluation. We show comparison across each of the 16 VBench dimensions. Higher scores indicate relatively better performance

Models Subject Background Temporal Motion Dynamic Aesthetic Imaging Object
Consistency Consistency Flickering Smoothness Degree Quality Quality Class

ModelScope 89.87% 95.29% 98.28% 95.79% 66.39% 52.06% 58.57% 82.25%

VideoCrafter 86.24% 92.88% 97.60% 91.79% 89.72% 44.41% 57.22% 87.34%

CogVideo 92.19% 95.42% 97.64% 96.47% 42.22% 38.18% 41.03% 73.40%

AnimateDiff 95.3% 97.68% 98.75% 97.76% 40.83% 67.16% 70.1% 90.9%

VideoCrafter2 96.85% 98.22% 98.41% 97.73% 42.5% 63.13% 67.22% 92.55%

Latte 91.61% 95.98% 97.94% 96.45% 68.33% 63.35% 66.69% 88.01%

LaVie (pretrained) 91.41% 97.47% 98.30% 96.38% 49.72% 54.94% 61.90% 91.82%

LaVie (QT) 94.13% 96.32% 97.81% 96.12% 60.00% 62.18% 66.04% 94.18%

Models Multiple Human Color Spatial Scene Appearance Temporal Overall
Objects Action Relationship Style Style Consistency

ModelScope 38.98% 92.40% 81.72% 33.68% 39.26% 23.39% 25.37% 25.67%

VideoCrafter 25.93% 93.00% 78.84% 36.74% 43.36% 21.57% 25.42% 25.21%

CogVideo 18.11% 78.20% 79.57% 18.24% 28.24% 22.01% 7.80% 7.70%

AnimateDiff 36.88% 92.6% 87.47% 34.6% 50.19% 22.42% 26.03% 27.04%

VideoCrafter2 40.66% 95.0% 92.92% 35.86% 55.29% 25.13% 25.84% 28.23%

Latte 35.44% 90.0% 85.73% 41.43% 36.18% 24.03% 24.80% 26.80%

LaVie (pretrained) 33.32% 96.80% 86.39% 34.09% 52.69% 23.56% 25.93% 26.41%

LaVie (QT) 44.66% 97.40% 87.65% 45.63% 54.68% 24.33% 25.12% 26.98%

Bold values indicate the best performance

VBench Evaluation. We apply VBench on pre-trained and
quality fine-tuned (QT) models to analyze the performance
of using two-stage training strategies. Table 5 shows that
after pre-training, LaVie has already outperformed state-of-
the-art in many dimensions. After quality fine-tuning, the
visual quality of generated videos has been further boosted,
in particular “subject consistency”, “aesthetic quality” and
“imaging quality”, which can also been observed in Fig. 10.
It proves that fine-tuned the pre-trained T2V model on
small-scale high-quality video dataset is an effective way
to improve the generated quality.

5.5 Further Analysis

Training scheme analysis. We conduct a qualitative analy-
sis of the training scheme employed in our experiments, as
well as the performance by using different temporal mod-
ules.We compare our joint image-videofine-tuning approach
with two other experimental settings: 1) fine-tuning the entire
UNet architecture basedonWebVid10M, and2) training tem-
poral modules while keeping the rest of the network frozen.
The results, depicted in Fig. 11, highlight the advantages of
our proposed approach. When fine-tuning the entire model
on video data, we observe catastrophic forgetting. The con-
cept of “teddy bear” gradually diminishes and the quality of
its representation deteriorates significantly. Since the train-
ing videos contain very few instances of “teddy bear”, the

model gradually adapts to the new data distribution, result-
ing in a loss of prior knowledge. In the second setting, we
encounter difficulties in aligning the spatial knowledge from
the image dataset with the newly learned temporal informa-
tion from the video dataset. The significant distribution gap
between the image and video datasets poses a challenge in
effectively integrating the spatial and temporal aspects. The
attempts made by the high-level temporal modules to modify
the spatial distribution adversely affect the quality of the gen-
erated videos. In contrast, our joint image-video fine-tuning
scheme effectively learns the joint distribution of image and
video data. This enables the model to recall knowledge from
the image dataset and apply the learned motion from the
video dataset, resulting in higher-quality synthesized videos.
The ability to leverage both datasets enhances the overall
performance and quality of the generated results.

Temporal module analysis. We have conducted small-
scale experiments on UCF101 for comparison. We explore
three different settings. 1) Our proposed temporal module, 2)
replacing RoPE in our module with absolute PE, 3) spatial-
temporal self-attention used in Singer et al. (2023). We train
three models with the same iterations and report FVD in
Table 6.While 3) is much complex than our proposed tempo-
ral module, we didn’t find improvement in visual quality and
training is relatively slower. Small-scale quantitative evalua-
tion demonstrates the effectiveness of our proposed temporal
module.
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A corgi walking in the park at sunset, oild painting style. (LaVie-pretrained)

A corgi walking in the park at sunset, oild painting style. (LaVie-QT))

A cute raccoon playing guitar in a park, oild painting style. (LaVie-pretrained)

A cute raccoon playing guitar in a park, oild painting style. (LaVie-QT)

Fig. 10 Comparison between LaVie-pretrained and LaVie-QT. After high-quality fine-tuning, LaVie is able to generate videos with higher aesthetic
level

(a) Training entire model (b) Training temporal modules (c) Joint image-video fine-tuning

Fig. 11 Training scheme comparison. We show image results based on a training the entire model, b training temporal modules, and c joint
image-video fine-tuning, respectively

Table 6 Ablation study on temporal modules

Methods LaVie Absolute PE ST Self-attention

FVD 611 625 635

RoPE analysis. We further analyze the effectiveness of
using RoPE for extrapolation, and compare our proposed
method with model using absolute PE. We train both models
on 16 frames, and generate 32 frames for comparison.Results

are shown in Fig 12, from which we can observe that model
usingRoPEperformsmuch better than the one using absolute

PE. The latter started to crashwhen the length of generated
video longer than the training data. In addition, we quanti-
tatively analyze 32-frame extrapolation using VBench. We
report results on two dimensions, subject consistency and
motion smoothness, in Table 7.
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Fig. 12 Positional Embedding Comparison. We compare models
trained on 16 frames using RoPE (up) and absolute positional embed-
ding (bottom), and show extrapolation results. Model using absolute
embedding starts to crash after the training length while model using
RoPE performs well for extrapolation

Table 7 Quantitative analysis on extrapolation

Methods Subject consistency Motion smoothness

Absolute PE 0.90 0.62

RoPE 0.96 0.93

Bold values indicate the best performance

Comparison with Latte. As DiT-based model has proved
to be effective for text-to-image/video generation, we also
qualitatively and quantitatively compare our method with
a transformer-based T2V model Latte, and show results in

Fig. 13 andTable 5 respectively in the revisedmanuscript.We
observed that Latte achieved better performance than LaVie
on several temporal dimensions such as temporal flickering,
dynamic degree, and overall consistency. We analyzed the
architecture of two models and found that Latte contains
more temporal modules (28 temporal transformer blocks)
than LaVie, hence it has stronger capacity to model tempo-
ral signal. On spatial dimensions, Latte slightly outperforms
LaVie on aesthetic quality and imaging quality. We conclude
such differences might due to the differences in training data
quality and pretrained T2I model.

5.6 More Applications

In this section, we present two applications to showcase the
capabilities of our pretrained models in downstream tasks: 1)
long video generation, and 2) personalized T2V generation
using LaVie.

Long video generation. To extend the video generation
beyond a single sequence, we propose a simple recursive
method. Similar to temporal interpolation network, we incor-
porate the first frame of a video into the input layer of a
UNet. By fine-tuning the base model accordingly, we enable
the utilization of the last frame of the generated video as a
conditioning input during inference. This recursive approach
allows us to generate an extended video sequence. Figure 14

Fig. 13 Comparison with Latte. We show comparison with transformer-based video diffusion model Latte using prompt ‘a polar bear playing
drum kit in NYC Times Square, 4k, high resolution’
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A car moving on an empty street, rainy evening, Van Gogh painting. [0∼2s]

A car moving on an empty street, rainy evening, Van Gogh painting. [2∼4s]

A car moving on an empty street, rainy evening, Van Gogh painting. [4∼6s]

A panda playing guitar near a campfire, snow mountain in the background. [0∼2s]

A panda playing guitar near a campfire, snow mountain in the background. [2∼4s]

A panda playing guitar near a campfire, snow mountain in the background. [4∼6s]

Fig. 14 Long video generation. By employing autoregressive generation three times consecutively, we successfully extend the video length of our
base model from 2s to 6 s
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(a) Misaka Mikoto

(b) Misaka Mikoto walking in the city

(c) Misaka Mikoto in the space

Fig. 15 Personalized T2V generation. We show results by adopting a
LoRA-based approach in our model for personalized video generation.
Samples used to train our LoRA are shown in (a). We use “Misaka
Mikoto” as text prompts. Results from our video LoRA are shown in

(b) and (c). By inserting pre-trained temporal modules into LoRA, we
are able to animate “Misaka Mikoto” and control the results by com-
bining them with different prompts

showcases the results of generating tens of video frames
(excluding frame interpolation) using this recursive manner,
applied five times. The results demonstrate that the quality of
the generated video remains high, with minimal degradation
in video quality. This reaffirms the effectiveness of our base
model in generating visually appealing frames.

Personalized T2V generation. Although our approach is
primarily designed for general text-to-video generation, we
demonstrate its versatility by adapting it to personalized
video generation through the integration of a personalized
image generation approach, such as LoRA (Hu et al., 2022).
In this adaptation, we fine-tune the spatial layers of our
model using LoRA on self-collected images, while keep-
ing the temporal modules frozen. As depicted in Fig. 15, the
personalized video model for “Misaka Mikoto” is created
after the fine-tuning process. The model is capable of syn-
thesizing personalized videos based on various prompts. For
instance, by providing the prompt “Misaka Mikoto walking

in the city”, the model successfully generates scenes where
“Misaka Mikoto” is depicted in novel places.

6 Limitations

While LaVie has demonstrated impressive results in general
text-to-video generation, we acknowledge the presence of
certain limitations. In this section, we highlight two specific
challenges which are shown in Fig. 16:

Multi-subject generation: Our models encounter diffi-
culties when generating scenes involving more than two
subjects, such as “Albert Einstein discussing an academic
paper with Spiderman”. There are instances where the
model tends to mix the appearances of Albert Einstein and
Spiderman, instead of generating distinct individuals. We
have observed that this issue is also prevalent in the T2I
model (Rombach et al., 2022). One potential solution for
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(a) Albert Einstein discussing an academic paper with Spider-
man.

(b) Albert Einstein playing the violin.

Fig. 16 Limitations. We show limitations on a mutiple-object generation and b failure of hands generation

improvement involves replacing the current language model,
CLIP (Radford et al., 2021), with a more robust language
understanding model like T5 (Raffel et al., 2020). This sub-
stitution could enhance the model’s ability to accurately
comprehend and represent complex language descriptions,
thereby mitigating the mixing of subjects in multi-subject
scenarios.

Hands generation: Generating human bodies with high-
quality hands remains a challenging task. The model often
struggles to accurately depict the correct number of fingers,
leading to less realistic hand representations. A potential
solution to address this issue involves training the model
on a larger and more diverse dataset containing videos with
human subjects. By exposing the model to a wider range of
hand appearances and variations, it could learn to generate
more realistic and anatomically correct hands.

7 Conclusion

In this paper, we present LaVie, a text-to-video foundation
model that produces high-quality and temporally coherent
results. Our approach leverages a cascade of video dif-
fusion models, extending a pre-trained LDM with simple
designed temporal modules enhanced by Rotary Position
Encoding (RoPE). To facilitate the generation of high-quality
and diverse content, we introduce Vimeo25M, a novel and
extensive video-text dataset that offers higher resolutions and
improved aesthetics scores. By jointly fine-tuning on both
image and video datasets, LaVie demonstrates a remarkable
capacity to compose various concepts, including styles, char-
acters, and scenes. We conduct comprehensive quantitative
and qualitative evaluations for zero-shot text-to-video gen-
eration, which convincingly validate the superiority of our
method over state-of-the-art approaches. Furthermore, we
showcase the versatility of our pre-trained base model in two
additional tasks i.e. long video generation and personalized
video generation. These tasks serve as additional evidence
of the effectiveness and flexibility of LaVie. We envision
LaVie as an initial step towards achieving high-quality T2V
generation. Future research directions involve expanding
the capabilities of LaVie to synthesize longer videos with

intricate transitions and movie-level quality, based on script
descriptions.
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