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Abstract
Spatio-temporal coherency is a major challenge in synthesizing high quality videos, particularly in synthesizing human
videos that contain rich global and local deformations. To resolve this challenge, previous approaches have resorted to
different features in the generation process aimed at representing appearance and motion. However, in the absence of strict
mechanisms to guarantee such disentanglement, a separation of motion from appearance has remained challenging, resulting
in spatial distortions and temporal jittering that break the spatio-temporal coherency. Motivated by this, we here propose
LEO, a novel framework for human video synthesis, placing emphasis on spatio-temporal coherency. Our key idea is to
represent motion as a sequence of flow maps in the generation process, which inherently isolate motion from appearance. We
implement this idea via a flow-based image animator and a Latent Motion Diffusion Model (LMDM). The former bridges
a space of motion codes with the space of flow maps, and synthesizes video frames in a warp-and-inpaint manner. LMDM
learns to capture motion prior in the training data by synthesizing sequences of motion codes. Extensive quantitative and
qualitative analysis suggests that LEO significantly improves coherent synthesis of human videos over previous methods on
the datasets TaichiHD, FaceForensics and CelebV-HQ. In addition, the effective disentanglement of appearance and motion
in LEO allows for two additional tasks, namely infinite-length human video synthesis, as well as content-preserving video
editing. Project page: https://wyhsirius.github.io/LEO-project/.
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1 Introduction

Deep generative models such as generative adversarial net-
works (GANs) (Goodfellow et al., 2014) and Diffusion
Models (Ho et al., 2020; Song et al., 2021) have fostered
a breakthrough in video synthesis (Ge et al., 2022; Ho et al.,
2022a; Singe et al., 2023; Skorokhodov et al., 2022; Saito et
al., 2020; Tulyakov et al., 2018; Vondrick et al., 2016; Vil-
legas et al., 2023; Wang et al., 2020, 2021; Yu et al., 2022),
elevating tasks such as text-to-video generation (Singe et al.,
2023; Villegas et al., 2023), video editing (Bar-Tal et al.,
2022), as well as 3D-aware video generation (Bergman et
al., 2022). While existing work has demonstrated promising
resultsw.r.t. frame-wise visual quality, synthesizing videos of
strong spatio-temporal coherency, tailored to human videos,
containing rich global and local deformations, remains chal-
lenging.

3 Inria, Université Côte d’Azur, 2004 Rte des Lucioles,
Valbonne 06902, France
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Fig. 1 Our framework caters a set of video synthesis tasks including
(i) unconditional video generation (first and second row), (ii) condi-
tional generation based on one single image (fourth row) and (iii) video

editing from the starting image (third and fifth row). Results pertain to
our model being trained on the datasets TaichiHD, FaceForensics and
CelebV-HQ

Motivated by this, we here propose an effective generative
framework, placing emphasis on spatio-temporal coherency
in human video synthesis. Having this in mind, a funda-
mental step has to do with the disentanglement of videos
w.r.t. appearance andmotion. Previous approaches have tack-
led such disentanglement by two jointly trained distinct
networks, respectively providing appearance andmotion fea-
tures (Tulyakov et al., 2018; Wang et al., 2020, 2021, 2020;
Yu et al., 2022), as well as by a two-phase generation pipeline
that firstly aims at training an image generator, and then at
training a temporal network to generate videos in the image
generator’s latent space (Ge et al., 2022; Tian et al., 2021;
Yan et al., 2021). Nevertheless, such approaches encompass
limitations related to spatial artifacts (e.g., distortions of body
structures and facial identities in the same sequence), as well
as temporal artifacts (e.g., inter-frame semantic jittering),
even in short generated videos of 16 frames. We argue that
such limitations stem from incomplete disentanglement of
appearance and motion in the generation process. Specifi-
cally, without predominant mechanisms or hard constraints
to guarantee disentanglement, even a minor perturbation in

the high-level semantics will be amplified and will lead to
significant changes in the pixel space.

Deviating from the above and towards disentangling
videos w.r.t. appearance and motion, in this paper we pro-
pose a novel framework for human video generation, referred
to as LEO, streamlined to ensure strong spatio-temporal
coherency. At the core of this framework is a sequence of
flow maps, representing motion semantics, which inherently
isolate motion from appearance. Specifically, LEO incorpo-
rates a latent motion diffusion module (LMDM), as well as
a flow-based image animator. In order to synthesize a video,
an initial frame is either provided externally for conditional
generation, or obtained by a generative module for uncon-
ditional generation. Given such initial frame and a sequence
of motion codes sampled from the LMDM, the flow-based
image animator generates a sequence of flow maps, and pro-
ceeds to synthesize the corresponding sequence of frames in
a warp-and-inpaint manner (Fig. 2).

The training of LEO is decomposed into two phases.
Firstly, we train the flow-based image animator to encode
input images into low-dimensional latent motion codes, and
map such codes to flow maps, which are used for recon-
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Fig. 2 Inference stage. At the inference stage, LMDM firstly accepts
a starting motion code α1 and a sequence of noise-vectors as input, in
order to generate a sequence of motion codes a, further utilized to syn-
thesize a sequence of flow maps φi by the pre-trained image animator.
The output video is obtained in a warp-and-inpaint manner based on x1
and φi

struction via warp-and-inpaint. Therefore, once trained, the
flow-based image animator naturally provides a space of
motion codes that are strictly constrained to only containing
motion-related information. At the second stage, upon the
space provided by the image animator, we train the LMDM
to synthesize sequences of motion codes and capture motion
prior in the training data. To endow LEO with the ability
to synthesize videos of arbitrary length beyond the short
training videos, we adopt a Linear Motion Condition (LMC)
mechanism in LMDM. As opposed to directly synthesizing
sequences of motion codes, LMC enables LMDM to synthe-
size sequences of residuals w.r.t. a starting motion code, in
order for longer videos to be easily obtained by concatenating
additional sequences of residuals.

To evaluate LEO, we conduct extensive experiments per-
tained to three humanvideodatasets, includingTaichiHD(Siaro-
hin et al., 2019), FaceForensics (Rössler et al., 2018),
and CelebV-HQ (Zhu et al., 2022). Compared to previous
video synthesis methods, LEO demonstrates a significantly
improved spatio-temporal coherency, even on synthesized
videos of length of 512 frames. In addition, LEO shows great
potential in two extended tasks, namely infinite-length video
synthesis, as well as video editing of a style in a synthesized
video, while maintaining the content of the original video.

2 RelatedWorks

Unconditional video generation aims to generate videos by
learning the full distribution of training dataset. Most of the
previous works (Brooks et al., 2022; Clark et al., 2019; Saito
et al., 2017; Tulyakov et al., 2018; Vondrick et al., 2016;
Wang et al., 2020; Wang, 2021; Wang et al., 2021) are built
upon GANs (Brock et al., 2019; Goodfellow et al., 2014;
Karras et al., 2019, 2020; Radford et al., 2015) towards ben-
efiting from the strong performance of the image generator.
Approaches (Bhagat et al., 2020; Denton et al., 2017; Li &
Mandt, 2018; Xie et al., 2020) based on VAEs (Kingma &

Welling, 2014) were also proposed while only show results
on toy datasets. Recently, with the progress of deep gener-
ative models (e.g., VQVAE (Van Den Oord et al., 2017),
VQGAN (Esser et al., 2021), GPT (Radford et al., 2018)
and Denoising Diffusion Models (Ho et al., 2020; Nichol &
Dhariwal, 2021; Song et al., 2021)) on both image (Ramesh
et al., 2021, 2022) and language synthesis (Radford et al.,
2019), as well as the usage of large-scale pre-trained mod-
els, video generation also started to be explored with various
approaches.

MoCoGANHD (Tian et al., 2021) builds the model on top
of a well-trained StyleGAN2 (Karras et al., 2020) by inte-
grating an LSTM in the latent space towards disentangling
content andmotion. DIGAN (Yu et al., 2022) and StyleGAN-
V (Skorokhodov et al., 2022) and MoStGAN-V (Shen et al.,
2023), inspired by NeRF (Feichtenhofer et al., 2019), pro-
posed an implicit neural representation approach to model
time as a continuous signal aiming for long-term video gen-
eration. VideoGPT (Yan et al., 2021) and TATS (Ge et al.,
2022) introduced to first train 3D-VQ models to learn dis-
crete spatio-temporal codebooks, which are then be refined
temporally by modified transformers (Vaswani et al., 2017).
Recently, several works (Ho et al., 2022b; Luo et al., 2023;
Yu et al., 2023) have shown promising capacity to model
complex video distribution by incorporating spatio-temporal
operations in Diffusion Models. While previous approaches
have proposed various attempts either in training strate-
gies (Tian et al., 2021; Ge et al., 2022; Yan et al., 2021)
or in model architectures (Skorokhodov et al., 2022; Wang
et al., 2020, 2021; Yu et al., 2022) to disentangle appearance
and motion, due to the lack of strong constrains, it is still
difficult to obtain satisfying results.

In contrast to unconditional video generation, conditional
video generation seeks to produces high-quality videos, fol-
lowing image-to-image generation pipeline (Chu et al., 2017;
Huang et al., 2018; Isola et al., 2017). In this context, addi-
tional signals such as semantic maps (Pan et al., 2019; Wang
et al., 2018, 2019), human key-points (Chan et al., 2019; Jang
et al., 2018; Yang et al., 2018; Walker et al., 2017; Wang et
al., 2019, 2021; Zakharov et al., 2019), motion labels (Wang
et al., 2020), 3DMM (Yang et al., 2022; Zhao et al., 2018)
and optical flow (Li et al., 2018; Ohnishi et al., 2018) have
been exploited to guide motion generation. In addition, text
description, has beenused in large-scale videodiffusionmod-
els (Blattmann et al., 2023a, b; Chen et al., 2023, 2024; Ho
et al., 2022a, b; Ma et al., 2024; Menapace et al., 2024;
Singe et al., 2023; Wang et al., 2023; Zhang et al., 2023) for
high-quality video generation. Our framework also supports
for conditional video generation based on a single image.
However, unlike previous approaches, our method follows
the image animation pipeline (Siarohin et al., 2019, 2021;
Wang et al., 2022) which leverages the dense flow maps for
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Fig. 3 Overview of LEO. Our framework incorporates two main parts,
(i) an image animator, aiming to generate flow maps and synthesize
videos in the pixel space, and (ii) Latent Motion Diffusion Model
(LMDM), focusing on modeling the motion distribution in a latent
motion space. Our framework requires a two-phase training. In the first
phase, we train the image animator in a self-supervised manner towards
mapping latent codes to corresponding flow maps φi . Once the image
animator is well-trained, motion codes a are extracted from a frozen
encoder and used as inputs of LMDM. In the second phase, LMDMs

are trained to learn the motion distribution by providing the starting
motion α1 as condition. Instead of directly learning the distribution of
a, we adopt a Linear Motion Condition (LMC) mechanism in LMDM
towards synthesizing sequences of residuals with respect to x1. At the
inference stage, given a starting image xi and corresponding motion
code αi , LMDM firstly generates a motion code sequence, which is
then used by the image animator to generate flow maps to synthesize
output videos in a warp-and-inpaint manner

motion modeling. We introduce our method in details in the
following.

3 Method

Figure 3 illustrates the training of LEO, comprising of two-
phases. We firstly train an image animator towards learning
high-quality latent motion codes of the datasets. In the sec-
ond phase, we train the Latent Motion Diffusion Model
(LMDM) to learn a motion prior over the latent motion
codes. To synthesize a video, the pre-trained image anima-
tor takes the motion codes to generate corresponding flow
maps, which are used to warp and inpaint starting frame.
The warp-and-inpaint operation is conducted in twomodules
inside image animator. The warping module firstly produces
flow fields based on motion codes to warp starting frame,
then the inpainting module learns to fill in the holes in the
warped starting frame and refine the entire image. Each video
sequence is produced frame by frame.

We formulate a video sequence v = {xi }Li=1, xi ∼ X ∈
R
3×H×W as v = {T (x1,G(αi ))}Li=2, αi ∼ A ∈ R

1×N ,
where xi denotes the i th frame, αi denotes a latent motion
code at timestep i , G represents the generator in the image
animator aiming to generate a flow map φi from αi .

3.1 Learning Latent Motion Codes

Towards learning a frame-wise latent motion code, we adopt
the state-of-the-art image animatorLIA (Wang et al., 2022) as

it enables to encode input images into corresponding motion
codes. LIA consists of two modules, an encoder E and a
generator G. During training, given a source image xs and
a driving image xd , E encodes xs, xd into a motion code
α = E(xs, xd), and G generates a flow field φ = G(α) from
the code. LIA is trained in a self-supervised manner with the
objective to reconstruct the driving image.

Training LIA in such a self-supervised manner brings two
notable benefits for our framework, (i) it enables LIA to
achieve high-quality perceptual results, and (ii) as a motion
code is strictly equivalent to flow maps, there are guaran-
tees that α is only motion-related without any appearance
interference.

3.2 Leaning aMotion Prior

Once LIA is well-trained on a target dataset, for any given
video v = {xi }Li=1, we are able to obtain a motion sequence
a = {αi }Li=1 with the frozen E . In the second phase of our
training, we propose to learn a motion prior by temporal
Diffusion Models.

Unlike image synthesis, data in our second phase is a set of
sequences. We firstly apply a temporal Diffusion Model for
modeling the temporal correlation of a. The general archi-
tecture of this model is a 1D U-Net adopted from Ho et al.
(2020). To train this model, we follow the standard training
strategy with a simple mean-squared loss,

LLMDM = Eε∼N (0,1),t

[
‖ε − εθ (at , t)‖22

]
, (1)
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where ε denotes the unscaled noise, t is the time step, at is
the latent noised motion code to time t . During inference, a
random Gaussian noise aT is iteratively denoised to a0 =
{αi }Li=1, and the final video sequence is obtained through the
generator.

At the same time in our experiments, we found that learn-
ing motion sequences in a complete unconditional manner
brings to the fore limitations, namely (i) the generated codes
are not consistent enough for producing smooth videos, as
well as (ii) the generated motion codes can only be used
to produce fixed length videos. Hence, towards addressing
those issues, we propose a conditional Latent Motion Dif-
fusion Model (cLMDM) which aims for high-quality and
long-term human videos.

One major characteristic of LIA has to do with the linear
motion space. Any motion code αt in a can be re-formulated
as

αi = α1 + mi , i ≥ 2, (2)

where α1 denotes the motion code at the first timestep and
mi denotes the motion difference between timestep 1 and i ,
so that we can re-formulate a as

a = α1 + m, (3)

wherem = {mi }Li=2 denotes themotion difference sequence.
Therefore, Eqs. 2 and 3 indicate that a motion sequence can

Fig. 4 Qualitative Comparison. We qualitatively compare LEO with
DIGAN, TATS, StyleGAN-V on short video generation. The results
indicate that on both a TaichiHD (128 and 256 resolutions) and b Face-
Forensics datasets, our proposedmethod achieves the best visual quality

and is able to capture the human structure well. Other approaches either
modify the facial structure (e.g., StyleGAN-V) or fail to generate a
complete human body (e.g., TATS and DIGAN)
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be represented by α1 and m. Based on this, we propose a
Linear Motion Condition (LMC) mechanism in cLMDM to
condition the generative process with α1. During training, at
each time step,we only add noise ontomt instead of the entire
a and leave α1 intact. The objective function of cLMDM is

LcLMDM = Eε∼N (0,1),t

[
‖ε − εθ (mt , α1, t)‖22

]
, (4)

where α1 denotes the condition signal and mt stands for the
noised m to time t . α1 is first added on mt and then con-
catenated along temporal dimension. LMCwill be applied at
each time step until we reachm0. The final motion sequence
is obtained as a0 = [α1,m0]. We find that following this,
a related generated motion sequence is more stable and
contains fewer artifacts, as α1 serves as a strong signal to
constrain the generated m to follow the initial motion.

While the results from cLMDM outperforms previous
models, the groundtruth α1 is necessitated during both, train-
ing and inference stage. Towards unconditional generation,
we train an additional simple DM to fit the distribution
p(αi ) in a frame-wise manner. We refer to the cLMDM and
such simple DM jointly as Latent Motion Diffusion Model
(LMDM). By this way, LMDM are able to work in both con-
ditional and unconditional motion generation.

Towards generating videos of arbitrary length, we pro-
pose an autoregressive approach based on proposed LMDM.
By taking the last motion code from the previous generated
sequence as the α1 in the current sequence, with a randomly
sampled noise, LMDM are able to generate an infinite-
length motion sequence. By combining such sequence in
pre-trained LIA with a starting image, LEO can synthesize
photo-realistic and long-term videos.

3.3 Learning Starting Frames

In our framework, a starting image x1 is required to synthe-
size a video. As image space is modeled independently, here
we propose two options to obtain x1.

Option 1: existing images The first option is to directly
take the images either from a real distribution or from an
image generation network. In this context, our model is a
conditional video generation model, which learns to predict
futuremotion from x1. Startingmotionα1 is obtained through
α1 = E(x1).

Option 2: conditionalDiffusionModelsThe second option
is to learn a conditional DDPM (Ho et al., 2020) (cDDPM)
with α1 as a condition to synthesize x1. By combining LEO
with LMDM as well as cDDPM, we are able to conduct
unconditional video synthesis.

4 Experiments

In this section, we firstly briefly describe our experimental
setup, introducing datasets, evaluation metrics and imple-
mentation details. Secondly, we qualitatively demonstrate
generated results on both, short and long video synthesis.
Then we show quantitative evaluation w.r.t. video quality,
comparing LEO with SoTA. Next, we conduct an ablation
study to prove the effectiveness of proposed conditional
mechanism LMC. Finally, we provide additional analysis of
our framework, exhibiting motion and appearance disentan-
glement, video editing and infinite-length video generation.

Datasets As we focus on human video synthesis, evalu-
ation results are reported on three human-related datasets,
TaichiHD (Siarohin et al., 2019), FaceForensics (Rössler et
al., 2018) and CelebV-HQ (Zhu et al., 2022). We use both
128× 128 and 256× 256 resolution TaichiHD datasets, and
only 256 × 256 resolution FaceForensics and CelebV-HQ
datasets.

• TaichiHD (Siarohin et al., 2019) comprises 3100 video
sequences downloaded from YouTube. In train and test
splits, it contains 2815 and 285 videos, respectively. We
conducted all our experiments on the train split and used
both 128 × 128 and 256 × 256 resolutions in our exper-
iments.

• FaceForensics (Rössler et al., 2018) includes 1000 video
sequences downloaded from YouTube. Following the
preprocessing of previous methods (Saito et al., 2020;
Skorokhodov et al., 2022), face areas are cropped based
on the provided per-frame meshes. We resized all videos
to 256 × 256 resolution.

• CelebV-HQ (Zhu et al., 2022) comprises 35666 high-
quality talking head videos of 3 to 20s each. In total,
it represents 15653 celebrities. We resized the original
videos to 256×256 resolution, in order to train our mod-
els.

Evaluation metric For quantitative evaluation, we apply
the commonly used metrics FVD and KVD, in order to
compare with other approaches on video quality and apply
Average Content Distance (ACD) towards evaluating the
identity consistency of faces and bodies in the generated
videos. In addition, we conduct a user study with 20 users
towards comparing with objective quantitative evaluation.
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Fig. 5 Comparison on long-term video generation. We compare with TATS by generating 512-frame videos. Videos from TATS start crashing
around 50 frames while our model is able to continue producing high-quality frames with diverse motion

• Frechet video distance (FVD) and Kernel Video Distance
(KVD)We use I3D (Carreira & Zisserman, 2017) trained
on Kinetics-400 as feature extractor to compute FVD
and KVD. However, we find FVD is a very sensitive
metric, which can be affected by many factors such as
frame-rate, single image quality, video length and imple-
mentation, which also mentioned in Skorokhodov et al.
(2022). Therefore, towards making a fair comparison,
on the TaichiHD dataset, we adopt the implementation
from DIGAN (Yu et al., 2022). As for FaceForensics and
CelebV-HQ, we chose to follow the implementation of
StyleGAN-V (Skorokhodov et al., 2022).

• AverageContentDistance (ACD)ACDmeasures the con-
tent consistency in generated videos. To evaluate results
from FaceForensics and TaichiHD, we extract features
from each generated frame and proceed to extract a per-
frame feature vector in a video. The ACD was then
computed using the average pairwise L2 distance of the
per-frame feature vectors. We follow the implementation
in Tian et al. (2021) to compute ACD for FaceForensics.
As for TaichiHD, we employ the pre-trained person-reID
model (Zheng et al., 2018) to extract person identity fea-
tures.

• User study We asked 20 human raters to evaluate gen-
erated video quality, as well as video coherency. In each
user study, we show paired videos and ask the raters,
to rate ’which clip is more realistic/which clip is more
coherent’. Each video-pair contains one generated video
from our method, whereas the second video is either real
or generated from other methods.

Implementation details Our framework requires two-
phase training. In the first phase, we follow the standard
protocol to train LIA (Wang et al., 2022) to encode input
images into low-dimensional latent motion codes, and map
such codes to flow maps, which are used for reconstruction
via warp-and-inpaint. Therefore, once trained, LIA naturally
provides a space of motion codes that are strictly constrained
to only containing motion-related information. In the second
phase, we only train LMDM on the extracted motion codes
fromEncoder.Wenote that theLMDMis a1DU-Net adopted

from Nichol and Dhariwal (2021), we set the input size as
64× 20, where 64 is the length of the sequence and 20 is the
dimension of the motion code. We use 1000 diffusion steps
and a learning rate of 1e−4. As the training of LMDM is
conducted in the latent space of LIA, the entire training is
very efficient and only requires one single GPU.

4.1 Qualitative Evaluation

We qualitatively compare LEO with SoTA by visualiz-
ing the generated results. We firstly compare our method
with DIGAN, TATS and StyleGAN-V on the FaceForen-
sics and TaichiHD datasets for short video generation. As
shown in Figs. 1 and 4, the visual quality of our generated
results outperforms other approaches w.r.t both, appearance
and motion. For both resolutions on TaichiHD datasets,
our method is able to generate complete human structures,
whereas both, DIGAN and TATS fail, especially for arms
and legs. When compared with StyleGAN-V on FaceForen-
sics dataset, we identify that while LEO preserves well facial
structures, StyleGAN-V modifies such attributes when syn-
thesizing large motion.

Secondly, we compare with TATS for long-term video
generation. Specifically, 512 frames are produced for the
resolution 128 × 128 pertained to the TaichiHD dataset. As
shown in Fig. 5, the subject in the videos from TATS starts
crashing around 50 frames and the entire video sequence
starts to fade. On the other hand, in our results, the subject
continues to perform diverse actions whilst well preserving
the human structure. We note that our model is only trained
using a 64-frame sequence.

4.2 Quantitative Evaluation

In this section, we compare our framework with five state-
of-the-art for both, conditional and unconditional short video
generation, as well as unconditional long-term video gener-
ation.

Unconditional short video generation In this context, as
described in Sec. 3.3, Option 2, the x1 is randomly gener-
ated by a pre-trained cDDPM. We compare with SoTA by
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Table 1 Evaluation for unconditional and conditional short video generation. LEO systematically outperforms other approaches on conditional
video generation, and achieves better or competitive results on unconditional generation w.r.t. FVD, KVD and ACD

TaichiHD128 TaichiHD256 FaceForensics CelebV-HQ

Method FVD16 KVD16 ACD16 FVD16 KVD16 FVD16 ACD16 FVD16

MoCoGAN-HD 144.7 ± 6.0 25.4 ± 1.9 − − − 111.8 0.33 212.4

DIGAN 128.1 ± 4.9 20.6 ± 1.1 2.17 156.7 ± 6.2 − 62.5 − 72.9

TATS 136.5 ± 1.2∗ 22.2 ± 1.0∗ 2.28 − − − − −
StyleGAN-V − − − − − 47.4 0.36 69.1

MoStGAN-V − − − − − 39.7 0.38 132.1

Ours (uncond) 100.4 ± 3.1 11.4 ± 3.2 1.83 122.7 ± 1.1 20.49 ± 0.9 52.3 0.28 −
Ours (cond) 57.6 ± 2.0 4.0 ± 1.5 1.22 94.8 ± 4.2 13.47 ± 2.3 35.9 0.27 40.2

*Results are reproduced based on official code and released checkpoints

Table 2 Evaluation for
unconditional long-term video
generation. LEO outperforms
other methods on long-term
(128 frames) video generation
w.r.t. FVD, KVD and ACD

TaichiHD128 FaceForensics

Method FVD128 KVD128 ACD128 FVD128 ACD128

DIGAN − − − 1824.7 −
TATS 1194.58 ± 1.1 462.03 ± 8.2 2.85 − −
StyleGAN-V − − − 89.34 0.49

Ours 155.54 ± 2.6 48.82 ± 5.9 2.06 96.28 0.34

Table 3 User study. We conduct user studies pertaining to the datasets
TaichiHD and FaceForensics w.r.t. video quality (up) as well as
coherency (down)

Method TaichiHD (%) FaceForensics (%)

Ours/TATS 93.00/7.00 –

Ours/StyleGAN-V – 91.33/8.67

Ours/TATS 98.60/1.40 –

Ours/StyleGAN-V – 93.20/6.80

Table 4 Ablation study of proposed LMC.Models with LMC achieved
the lowest FVD on both datasets

TaichiHD FaceForensics

w/o LMC 118.6 60.03

with LMC 100.4 52.32

generating 16 frames. To compare with DIGAN on high-
resolution generation, we also generate videos of 256× 256
resolution. Related FVDs and KVDs are reported in Table 1.
LEO systematically outperforms other methods w.r.t. video
quality, obtaining lower or competitive FVD and KVD on all
datasets. On high-resolution generation, our results remain
better than DIGAN.

However, by comparing the results between StyleGAN-V
and ours, we find FVD is not able to represent the quality
of generated videos veritably. We observe that StyleGAN-
V is not able to preserve facial structures, whereas LEO is

able to do so, see Fig. 4. We additionally compute ACD, in
order to further analyze the identity consistency in 16-frame
videos. Table 1 reflects on the fact that our method achieves
significantly better results compared to other approaches.
In addition, we conduct user study w.r.t. video quality and
coherency of generated videos among different methods.
Results in Table 3 showcase that as nearly all users rated for
our generated results to be superior than other approaches.
Hence, we conclude that a metric, replacing FVD is in urgent
need in the context of video generation.

Unconditional long video generation We evaluate our
approach for long-term video generation w.r.t. FVD and
ACD. In this context, we compare LEOwith StyleGAN-V on
the FaceForensics dataset, and bothDIGAN and TATS on the
TaichiHD. We report results based on 128-frame generation
in Table 2, which clearly shows that our method outperforms
others in such context. We hypothesize that consistent and
stable motion codes produced by our LMDM are key to pro-
ducing high-quality long-term videos.

Conditional short video generation As described in
Sec. 3.3, Option 1, our framework additionally caters for
conditional video generation by taking an existing image to
hallucinate the following motion. Specifically, we randomly
select 2048 images from both, TaichiHD and FaceForensics
datasets as x1 and compute corresponding α1 as input of
LMDM. As depicted in Table 1, results conditioned on the
real images achieve the lowest FVD, KVD and ACD values,
suggesting that the quality of a starting image is pertinent for
output video quality, which further signifies that in the set-
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Fig. 6 Disentanglement of motion and appearance. The first and second row share the same appearance, with different motion codes. Results
display that our model is able to produce diverse motion from the same content

Fig. 7 Video editing. We show video editing results by combining LEO with off-the-shelf image editing model ControlNet. We are able to edit the
appearance of the entire video sequence through only editing the starting image

Fig. 8 Infinite-length video generation for TaichiHD

ting of unconditional generation, training a better cDDPM
will be instrumental for improving results.

5 Ablation Study

In this section, we place emphasis on analyzing the effec-
tiveness of proposed Linear Motion Condition (LMC) in
LMDM.We train twomodels,with andwithout LMConboth
TaichiHD and FaceForensics datasets. As shown in Table 4,

using LMC significantly improves the generated video qual-
ity, which proves that our proposed LMC is an effective
mechanism for involving α1 in LMDM.

6 Additional Analysis

Motion and appearance disentanglement We proceed to
combine the same x1 with different m, aiming to reveal
whether m is only motion-related. Figure 6 illustrates that

123



International Journal of Computer Vision

Table 5 User study of repeated motion. We show the occurrence of
repeated motion with and without the usage of Transition DM

Occurrence (%)

w/o Transition DM 0.45

with Transition DM 0.02

different m enables the same subject to perform different
motion—which proves that our proposed LMDM is indeed
learning a motion space, and appearance and motion are
clearly disentangled. This experiment additionally indicates
that our model does not overfit on the training dataset, as
different noise sequences are able to produce diverse motion
sequences.

Video Editing As appearance is modeled in x1, we here
explore the task of video editing by modifying the seman-
tics in thestarting image. Compared to previous approaches,
where image-to-image translation is required, our framework
simply needs an edit of the semantics in an one-shot manner.
Associated results are depicted in Figs. 1 and 7. We apply
the open-source approach ControlNet (Zhang & Agrawala,
2023) on the starting frame by entering various different
prompts. Given that the motion space is fully disentangled
from the appearance space, our videos maintain the original
temporal consistency, uniquely altering the appearance.

Infinite-length video generation In addition to presented
settings, our framework is able to generate infinite-length
videos. To generate long-term FaceForensics, as shown in
Fig. 9, we provide the last generated code from the previ-
ous sequence as the starting code of the current sequence.
The entire long-term video is generated in an autoregressive
manner. Surprisingly, we find that such a simple approach is
sufficient to produce more than 1000 frames. We note that
for TaichiHD dataset, due to limited motion patterns, this
setting yields repeated motion. Towards addressing this lim-
itation, as shown in Fig. 8, we design an additional Transition
Diffusion Model (Transition DM) aimed at generating tran-
sition motion between the last code from original generated
sequence and a new motion code generated from the simple
DM. Doing so, the Transition DM enforces the network to
exit the original motion pattern and transit to new pattern. To
evaluate the effectiveness of the proposed method, we gener-
ate long videos with and without Transition DM and request
human raters towatch respective videos and answer the ques-
tion ‘Does the clip contain repeated motion?’. Results are
reported in Table 5, which shows the effectiveness of Tran-
sition DM to prevent repeated motion.

Compared to current diffusion-basedmethods, our approach
is very efficient in longvideogeneration.Weautoregressively
run LMDMfor the generation of longmotion code sequences
in latent space. Given that LMDM is a small-scale network,
which only focuses on generating 1-D motion code, even for

Fig. 9 Infinite-length video generation for FaceForensics

very long sequence generation, it only requires few seconds
during inference stage. In addition, the image animator itself
is a one-step inference model which enables our proposed
method to be significantly efficient.

7 Limitations

We list several limitations in current framework and proposed
potential solutions for future work.

• Geometry ambiguity and temporal coherency Since we
use a 2D generator to predict 2D flow maps, LEO is not
able to handle human body occlusion verywell especially
in Taichi dataset. One solution would be to incorporate
the architecture of NeRF or Tri-plane into our generator
to support 3D-aware generation.We think in this way, the
issues of geometry ambiguity and human body occlusion
could be addressed.

• Generalizability Since the pre-trained image animator
focuses on talking head and human bodies, our proposed
framework currently performs better on human-centric
videos. However, to analyze the generalizability of LEO,
we conducted a small-scale experiment on UCF101 and
report quantitative evaluation inTable 6. The results show
that under current model design, LEO achieves compet-
itive results with previous GAN-based methods but still
has large performance gap compared with large-scale
video diffusion models.
We believe our framework is pushing the boundaries of
video generation, as it solves a challenge, which consti-
tutes generation of long human-centric videos.While this
is a first step, the proposed method has the potential to
generalize onto additional settings such as text-to-video
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Table 6 Quantitative evaluation
on UCF101 w.r.t. FVD

Methods FVD16

MoCoGAN-HD 1729.6

DIGAN 1630.2

StyleGAN-V 1431.0

Make-A-Video 367.23

Video LDM 550.61

LaVie 540.30

Ours 1356.2

generation. However, achieving such goals requires scal-
ing up and re-designing (a) the original LIA, aswell as (b)
LMDM, and (c) training the entire system on larger-scale
well-curated video datasets, which requires extremely
expensive computational resources.Wewill explore such
research directions in our future work.

• Architecture Current architect of LEO still relies on con-
volutional networks in both image animator and latent
motion diffusion models. Advanced techniques such as
transformers have not been explored yet. Future work
would be involving novel architecture design and train-
ing LEO on larger-scale dataset to explore the limits of
current approach.

8 Conclusions

In this paper, we introduced LEO, a novel framework incor-
porating a Latent Image Animator (LIA), as well as a Latent
Motion Diffusion Model (LMDM), placing emphasis on
spatio-temporal coherency in human video synthesis. By
jointly exploiting LIA and LMDM in a two-phase train-
ing strategy, we endow LEO with the ability to disentangle
appearance and motion. We quantitatively and qualitatively
evaluated proposedmethod on both, human body and talking
head datasets and demonstrated that our approach is able to
successfully produce photo-realistic, long human videos. In
addition, we showcased that the effective disentanglement
of appearance and motion in LEO allows for two addi-
tional tasks, namely infinite-length human video synthesis
by autoregressively applying LMDM, as well as content-
preserving video editing (employing an off-the-shelf image
editor (e.g., ControlNet)). We postulate that LEO opens a
new door in design of generative models for video synthesis
and plan to extend our method onto more general videos and
applications.

Data Availability The datasets used during and analyzed during the
current study are available in the following public domain resources:
• FaceForensics (Rössler et al., 2018) https://github.com/ondyari/
FaceForensics
• CelebV-HQ (Zhu et al., 2022) https://celebv-hq.github.io

•TaichiHD (Siarohin et al., 2019) https://github.com/AliaksandrSiarohin/
first-order-model
The models and source data generated during and analyzed during the
current study are available from the corresponding author upon reason-
able request.
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proposed latent motion diffusion model. Our approach can be used for
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ing how to model motion distribution in a pretrained image animator
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equally well irrespective of the difference in subjects.
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