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FA-GAN: Face Augmentation GAN for
Deformation-Invariant Face Recognition

Mandi Luo™, Jie Cao", Xin Ma, Xiaoyu Zhang, and Ran He

Abstract— Substantial improvements have been achieved in
the field of face recognition due to the successful application of
deep neural networks. However, existing methods are sensitive to
both the quality and quantity of the training data. Despite the
availability of large-scale datasets, the long tail data distribution
induces strong biases in model learning. In this paper, we present
a Face Augmentation Generative Adversarial Network (FA-GAN)
to reduce the influence of imbalanced deformation attribute
distributions. We propose to decouple these attributes from the
identity representation with a novel hierarchical disentangle-
ment module. Moreover, Graph Convolutional Networks (GCNs)
are applied to recover geometric information by exploring the
interrelations among local regions to guarantee the preservation
of identities in face data augmentation. Extensive experiments
on face reconstruction, face manipulation, and face recognition
demonstrate the effectiveness and generalization ability of the
proposed method.

Index Terms— Face augmentation, deformation-invariant face
recognition, face disentanglement, graph convolutional networks.

I. INTRODUCTION

ACE recognition has been an active area over the past
decades and has shown extremely high value in both
research and practical applications. The notable success of
deep learning has enabled significant progress in face recog-
nition [1]-[7], [7]-[17]. However, face deformation [18], i.e.
face variations caused by pose, expression, and other facial
movements and evolution, severely interferes with face recog-
nition performance under in-the-wild conditions, making it a

long-standing challenge.
Recent research substantiates that utilizing synthesized faces
from generation models [23]-[25] assists recognition models
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in reducing the influences from face deformations. Given
an arbitrary face, the corresponding normalized face [26],
i.e., the face whose identity is preserved while other factors
are normalized, can be inferred by a generation model. Then,
a recognition model extracts the identity representation [27]
from the normalized face or both the normalized and the
original faces for the subsequent verification/recognition task.
Such recognition via generation [28], [29] mitigates the issues
caused by face deformations, such as pose, expression, and
other factors.

Following this line of study, existing works have made
exceptional contributions in constrained environments. Their
models have achieved both satisfying visual quality and
high-level face recognition rates on some benchmark datasets,
such as Multi-PIE [30] and M2FPA [31], which are col-
lected under constrained environments. However, there still
exist some ongoing issues when these models are applied to
real-life situations. Initially, the approaches are mainly based
on the 3D Morphable Model (3DMM) [32]. Researchers utilize
3DMM to reconstruct 3D face models and then render the
corresponding normalized faces. 3D-based methods [33], [34]
have difficulties in completing occluded facial regions and
dealing with extreme cases. Current methods [35], [36] based
on Generative Adversarial Network dominate the task of
recognition via generation and have achieved notable results.
However, these approaches still face challenges when applied
to real-world scenarios.

We note that collecting larger datasets can mitigate this issue
as well. However, this is usually infeasible since the cost is
prohibitively high in practice. Labeling data collected from
real-life situations is even more expensive, and many samples
are difficult to lable. On the other hand, as shown in Fig. 1,
these data always fall into unbalanced distributions in terms
of face deformations such as large pose. These facts lead to
overfitting problems.

To eliminate the influence of the long tail distribution of
the data, we propose a Face Augmentation Generative Adver-
sarial Network (FA-GAN) to augment the existing datasets
by generating faces with various deformations. We focus on
identity preservation and regard other aspects of the input
image, such as background, as nuisance factors. Moreover,
to avoid fuzziness in the generated face images, especially
in dealing with extreme deformations, we choose to handle
the geometry and texture information separately. Our proposed
FA-GAN is composed of two branches. The first branch is a
graph-based Geometric Preserving Module (GPM) for learning
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Fig. 1. Data distribution in IJB-A [19] and CASIA-WebFace [20] in terms
of different poses. Note that there are no official labels for the different poses
with accurate degrees. We detect face landmarks using [21] and estimate the
degree based on the distance between the left eye center and right eye center.
We assume that the possible errors lie in an acceptable margin. Note that the
face images approximately obey the long tail distribution [22].

the geometry information. The second branch is the Face
Disentanglement Module (FDM), which is a novel two-stage
disentanglement module responsible for disentangling defor-
mation attributes representations from identity representations.
On one hand, the two branches deal with high-level and
low-level information separately, making them more focused
compared with directly image-to-image translation. On the
other hand, benefiting from the end-to-end training strategy,
the two branches are designed to coordinate with each other
to obtain mutual improvements.

The preservation of face geometry such as face shape
and features is of great importance for face recogni-
tion. However, while generating normalized faces, previous
schemes [28], [36] use mean facial landmarks calculated on
training datasets. These schemes cause geometry distortion in
the synthesized faces because they neglect the fact that land-
marks are identity-dependent. To address this issue, we esti-
mate the normalized face parsing map I, for each input by
learning identity-dependent geometric information. Since the
face parsing map contains both semantic information and
the spatial distribution of different face regions, it is able to
perform as a suitable guidance with high-level information for
image generation. Moreover, considering that human faces are
non-rigid objects, the process of face deformation variations
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such as face rotation and expression changes in fact belong to
nonlinear transformation. As demonstrated in previous litera-
ture [37], [38], Graph Convolutional Networks (GCNs) [39]
are more suitable than Convolutional Neural Networks (CNNs)
in dealing with non-Euclidean relations. Specifically, we treat
different face parts, which are divided approximately based
on semantic meaning, as different nodes of a graph. Then
we apply GCNs to learn the interrelations and high-level
similarities between these nodes under the supervision of I,
and the edges between the nodes are updated accordingly
during the training phase. In this way, our model is able to
jointly explore the spatial and semantic relations of different
face regions, thus the identity-dependent geometry information
can be well preserved. The learned ip is utilized for guiding
the generation process, which is conducted by the second
branch, called the FDM.

Information disentanglement has been widely used in face
generation tasks [35], [40]. Unfortunately, when large defor-
mations are taken into account, existing approaches still strug-
gle between learning useful representations and maintaining
visual quality. This may occur because existing approaches
usually decouple representations simultaneously. However,
we notice that some deformations, such as expression, are
correlated with identity. As depicted in Fig. 3, there are
intersections between identity representations and deformation
representations. Naturally, we propose the idea of hierar-
chical representation disentanglement. The proposed FDM
branch is designed with two stages. The first stage is used
for disentangling identities from nuisance factors, which are
termed “noise”. Furthermore, the second stage disentangles
the deformation attribute representations. With these repre-
sentations well disentangled, we are able to achieve face
manipulation based on actual needs. Then, we can augment
real-life face datasets to finetune recognition models and boost
their recognition/verification performance.

Extensive qualitative and quantitative results have been
obtained on multiple datasets, including Multi-PIE [30],
MZ2FPA [31], LFW [41], IIB-A [19], and MegaFace [42]. We
thoroughly evaluate the recognition/verification accuracy [20]
of numerous well-known recognition models [8], [11], [13],
[43]-[47] on the augmented CASIA-WebFace. The perfor-
mance improvements demonstrate that our proposed method
represents the identity and deformations well not only in
constrained environments but also in unconstrained environ-
ments. This proves that our model trained on constrained
datasets can be adapted to unconstrained datasets without extra
efforts, which shows the effectiveness and generalization of
our proposed FA-GAN.

Our contributions are summarized as follows:

« We propose a novel hierarchical disentangled repre-
sentation learning scheme, namely Face Augmenta-
tion Generative Adversarial Network (FA-GAN), for
identity-preserving face synthesis with various deforma-
tions, such as large poses.

« We present the Geometry Preserving Module (GPM) to
extract geometric information by exploring both spatial
and semantic relations among different face regions. Pre-
serving identity-related geometric information provides
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Overall architecture of our proposed FA-GAN. The FA-GAN contains two branches, which address geometry preservation and face feature

disentanglement, respectively. The first branch, called GPM, models the input face I;, as graph G = {V, E} by treating the latent embeddings of different
face regions as nodes v € V and their interrelations as e € E. The GPM decodes the updated graph G’ into the normalized face parsing map I, which is
used in FDM. This second branch disentangles the encoded face feature embeddings into identity representation 2id and deformation codes (é poses ¢ pose)
under the guidance of i p- The encoded embedding triplet < Z;q, Cexpr, Cpose > can be utilized for further face manipulation and augmentation.
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Fig. 3. Illustration of the entangled representations. The largest ellipse is
the extracted representation from a certain face image. Different circles depict
different attribute representations.

another advantage in both face recognition accuracy and
face generation performance.

o The extensive qualitative and quantitative results prove
the effectiveness of the proposed FA-GAN, especially
in unconstrained environments, which are extremely
challenging.

II. RELATED WORK
A. Face Synthesis
Synthesizing desired faces is a challenging problem.
Researchers have made great efforts to address this prob-
lem for years and have achieved exciting results. The
earliest approaches are mostly based on classical com-
puter graphics [48]-[50]. For instance, Zhu et al. [49]

proposed High-Fidelity Pose and Expression Normaliza-
tion (HPEN) with 3DMM [32] to recover canonical-view [51],
expression-free images. Other researchers have also attempted
statistical modeling. A joint frontal view reconstruction and
landmark localization using a small number of frontal images
were realized by solving a constrained low-rank minimization
problem [52]. Later, with the introduction of GAN [23], which
was a landmark event in Al history, deep learning-based
methods [35], [36], [53]-[57] began occupying researchers’
horizons. Goodfellow et al. [23] first realized synthesizing
images from white noise and proved the possibility of syn-
thesizing images with deep learning methods. Yang et al. [58]
introduced a recurrent convolutional encoder-decoder network
to capture long-term dependencies and render rotated objects.
Zhu et al. [59] proposed cycle consistency to address circum-
stances where there is no paired training data. Cao et al. [57]
introduced UV space in the training of deep learning networks
to make the results more photo-realistic. Brock et al. [60]
used orthogonal regularization in generator networks and
realized balance control between the quality and diversity of
the synthesized images. Karras et al. [61] drew inspiration
from style transfer and realized detailed manipulation in face
images.

Note that our proposed FA-GAN is also based on GANS.
We focus on synthesizing face images with desired deforma-
tions from arbitrary deformations. Inspired by [35], we extract
deformation-invariant identity representations to better pre-
serve the identity information.
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B. Representation Learning

In face recognition tasks, researchers aim at learning
effective identity representations and have achieved stunning
results [1]-[14], [62]-[65]. Traditionally, some works are
based on sparse encoding. For instance, Zhang et al. [64]
analyzed the working mechanism of sparse representation
based classification and pointed out that the use of Collab-
orative Representation (CR) is efficient for face classifica-
tion. Yang et al. [62] proposed robust sparse coding (RSC)
to model the sparse coding as a sparsity-constrained robust
regression problem. The RSC seeks for the maximum like-
lihood estimation solution of the sparse coding problem
and was proved to be effective in dealing with outliers.
Minaee et al. [63] used the scattering transform, which is
a kind of convolutional network that encodes signals into
multi-layer representations, to extract features from faces.

Nowadays, the methods are mainly based on deep learning
networks. In 2015, Parkhi [11] proposed to realize the face
recognition task with DeepFace, which is one of the most
representative networks in face recognition. Liu et al. [45]
proposed SphereFace to convert the Softmax loss from the
Euclidean distance to an angular interval. Wang et al. [44]
demonstrated that through the maximization of the cosine
decision boundary, the maximum interclass difference and the
minimum intraclass differences can be realized. Liu et al. [15]
proposed the Adaptive Margin Softmax to adjust the margins
for different classes adaptively, and introduced Hard Prototype
Mining and Adaptive Data Sampling to make the training
more effective and efficient. Cao er al. [7] addressed the
long-tailed problem in face recognition by designing a Domain
Balancing (DB) mechanism.

We adopt disentangled representation learning in this paper
to perform face recognition. Disentangled representation learn-
ing [17], [66]-[71] aims to model the key factors that affect
the shape of the data so that changes in a key factor only
cause changes in only a certain feature of the data, while
other features are not affected. Disentangled representation
learning is now mainly based on deep learning. For instance,
Mathieu et al. [72] developed a conditional generative model
and separated the hidden factors of variation into complemen-
tary codes. Wang et al. [73] realized the re-rendering of new
images with specified scene properties from a single image by
proposing a Tag Disentangled GAN. InfoGAN [74] maximizes
the mutual information between the latent variables and the
observations to learn interpretable disentangled representa-
tions. Tran er al. [35] proposed a representative GAN-based
disentanglement method that used labeled data to decompose
representations into class-related and class-independent com-
ponents. Inheriting a similar supervised manner, we develop a
novel two-level disentanglement module to preserve identity
information and disentangle face attributes well.

C. Graph Convolutional Network

Graph data modeling is a long-standing strategy. At first,
researchers focused on statistical analysis methods [75], [76],
where there was no machine learning model participating in
this period. Recently, researchers have gradually shifted their
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attention to applying deep learning models to graph data for
end-to-end modeling. There are two branches in this field,
which can be categorized into spectral methods [39], [77],
[78] and spatial methods [79]-[82]. In 2013, Bruna et al. [83]
proposed the first graph convolutional neural network, where
graph convolution is defined in spectral space. However,
the original spectral methods are complicated in time and
space, thus promoting the introduction of models in [39]
and [77], which parameterize the convolution kernel to greatly
reduce the time and space complexity.

We follow the design of a Graph Convolutional Network
(GCN), which is an end-to-end learning method officially
proposed by [39] for the field of graph embedding. In the field
of computer vision, Convolutional Neural Networks (CNNs)
have made great achievements mainly for Euclidean structure
data. While for topological structure data, the corresponding
tool is a GCN, which can handle more general structural data.
GCNs utilize filters to extract the high-dimensional features of
nodes and their neighborhoods in the graph and thus find the
high-level similarities between nodes. GCNs have been applied
to many tasks, including behavior detection [84], cluster-
ing [85], and semi-supervised learning [39]. We argue that in
the field of face recognition via generation, a GCN 1is capable
of extracting the representative topological structures of face
images, making it more suitable than the traditional CNN.

D. Data Augmentation

It is generally accepted that larger and better datasets
can boost the performance of deep learning models since
they are data-driven [86], [87]. Collecting labeled datasets is
time-consuming and requires high budgets, especially in fields
such as face recognition where the scales of the datasets are
in millions. Thus, some researchers focus on augmenting the
original datasets, which is termed data augmentation.

Aiming at solving problems from the training set perspec-
tive, data augmentation strategies are based on the assumption
that there is still useful information hiding in the original
training dataset that can be extracted [88]. The existing
methods can be mainly divided into two classes: basic image
manipulations and deep learning approaches. In the basic
image manipulation class, techniques such as geometric trans-
formations [89], noise injection [90], and color space transfor-
mations [91], [92] have all made contributions. However, deep
learning approaches are gradually becoming the main methods.
Konno et al. [93] proposed “Icing on the Cake” to manipulate
the modularity of neural networks. DeVries et al. [94] consid-
ered expanding data in the feature space. Bowles et al. [95]
claimed that GANs present a data augmentation possibil-
ity by synthesizing samples with the appearance of real
images. DA-GAN [96] is one of the methods that success-
fully confirms the hypothesis of [95] and achieves stunning
results. Masi er al. [97] questioned the necessity of collecting
large-scale face datasets. Kortylewski et al. [98] conducted
face recognition experiments with fully synthetic data and
demonstrated that data with strong diversity can increase the
generalization across different datasets. Tang et al. [99] intro-
duced the 3DMM to augment face images with desired poses.
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Lv et al. [100] proposed five different face augmentation
strategies and evaluated them respectively. Taylor et al. [101]
presented the utilization of basic geometric data augmentation
schemes, such as rotation, cropping, and so on, to augment
face data. Notably, our proposed FA-GAN is also a face
augmentation approach based on GANs. We realize data
augmentation by synthesizing face images with desired defor-
mations from original face images with arbitrary deformations.

III. APPROACH

Assume that for a given face recognition network,
we choose an in-the-wild dataset A = {I, I, I3,---} for
training. If we want to augment A for deformation-invariant
face recognition, two requirements should be met. First,
the identity information of a person needs to be well preserved.
Second, we have to obtain disentangled deformation attribute
representations, such as different poses {p1, p2, p3,---} and
different expressions {q1, g2, g3, - - - }, which lie in the same
latent space as the identity representations. This guarantees
two goals: 1) learning efficient identity representations for face
recognition and 2) augmenting face datasets with customized
deformation demands. Finally, we obtain the expanded dataset
A ={1", 17, ', 157, 1%, - - }. The whole process can be
realized by our proposed network with the overall architec-
ture depicted in Fig. 2. The FA-GAN mainly contains two
parts: the graph-based Geometry Preserving Module (GPM)
for geometry enhancement and the Face Disentanglement
Module (FDM) for representation disentanglement. In the
following section, we introduce the detailed architectures and
the corresponding loss functions of the proposed modules.
Note that our model is trained in a supervised manner, which
means paired data are required. We use the presence and
absence of superscript " on a variable to indicate whether it
is drawn from the distribution of the generated data or the
target data, respectively.

A. Geometry Preserving Module

A person’s identity is substantially related to the shape
and arrangement of his/her face features, which are termed
face geometry features in our case. It is crucial to ensure the
geometric consistency while manipulating face images. To deal
with deformation variations such as large poses, previous
methods [28], [36] introduced predefined average landmarks,
i.e., left eye center, right eye center, nose tip, and mouth center,
to guide face normalization. Since different faces do not share
the same landmarks, the resulting normalized faces may suffer
from topology distortions, hence degrading the preservation of
identity representations.

To address this problem, we propose the geometry pre-
serving module to estimate the normalized face parsing map
I, from arbitrary input face image I;,. Since the normalized
face parsing map contains both semantic information and the
spatial distribution of different face parts of a certain person,
the identity-related geometry information is well preserved.
Specifically, we apply GCNs to take this responsibility. GCNs
are good at determining the response of a specific node based
on its neighboring nodes and are different from traditional
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Fig. 4. Different cropping strategies for graph initialization. The left denotes
our cropping strategy with semantic meaning involved, and the right denotes
the regular cropping strategy adopted by Li et al. [37].

Cexpr (p ose Z id
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Disentanglement Reconstruction (Set 1) Recombination (Set 2)

I in I tar

Fig. 5. Illustration of our training strategy. After the input image I;;, gets
disentangled, some iterations (Set 1) are executed to reconstruct I, with the
extracted < Ziq, Cexpr, Cpose >. Other iterations (Set 2) combine Z;q with
target Cexpr and Cpose to manipulate I;;, with desired deformations.

convolutions that can only be applied to standard regular grids.
We use the advantage of message passing between nodes
of a GCN and utilize it for exploring the relations between
different face regions. As shown in Fig. 4, we adopt a different
crop strategy from that in [37]. In our case, the input image
I;;, is cropped into different regions, i.e., Il.ln, Il.zn, I?n, and
I;‘n, representing the left eye, right eye, nose, and mouth
regions, respectively. These regions, together with I;,, are
encoded into embeddings as the nodes o € V in our graph
G = {V, E}. In this way, our nodes are designed with semantic
meanings. The edges e € E are denoted as an adjacency
matrix M of dimension N x N, where the relations between
every two nodes are taken into consideration. During training,
the edges are initialized with randomly selected values and
updated by back-propagation under the supervision of I,
until convergence. One layer of graph convolutions can be
represented as:

G = MXW, (D

where X is of N x p dimension representing the input features,
and W is the weight matrix of p x g dimension. As a result,
the output G from one layer of graph convolution has the
dimension of N x ¢, where N is the node number and q
denotes the predefined dimension of the extracted features for
each node. Specifically, in our case, we stack two layers of
graph convolutions and can be denoted as:

G’ = MXW | W,. (2)
Thus, the output of the graph convolutions hidden layer is:
G’ = MXW,. (3)

The learned embedding features G” are further fed into the
following generation block for face parsing map I, generation.
The process is supervised by the target normalized face
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parsing map I,, which is obtained by applying the method
presented in [102] to I;,. The £ loss is introduced that can
be formulated as,

£p=||1p_1p||lo “)

Represented by I p» the learned relations between the nodes
contain both spatial and semantic information of different
face regions, depicting complete geometric information of a
certain face. We further utilize ip for stabilizing geometry in
the process of face manipulation and augmentation, which is
discussed in the following parts.

B. Face Disentanglement Module

Disentangled feature learning has been proven to be effec-
tive in many works [35], [103], [104]. To augment face
datasets with the desired deformations, we need to learn
the representations of different identities and deformation
attributes to further combine them freely. It is worth noting
that these representations are tangled with each other in face
images. Naturally, to obtain accurate representations that are
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Ilustration of the architecture details of different subnetworks.

as disentangled as possible, we propose the idea of hierar-
chical disentanglement in our proposed Face Disentanglement
Module (FDM).

As shown in Fig. 2, the FDM is composed of two levels.
Each of them has a different focus. The first level learns iden-
tity feature embeddings while the second level further concen-
trates on attribute embedding learning. Given an input image
I;, with arbitrary face deformation attributes, the encoder E
encodes it into latent embedding 71 under the guidance of
normalized face parsing map ip generated by the first branch
of the GPM. We utilize E3 to encode ip to the same latent
space as the hidden embedding Z;, which is the intermediate
step in the process of obtaining Zi. Then, 1 p is concatenated
with 2h and fed into the remaining network of Ep, from
which we obtain the encoded Z 1. We then divide 7 | into two
parts. The first part Zia represents the identity information,
and the second part an-se represents the nuisance factors.
To ensure the completeness and accuracy of the extracted
identity information, our network should be able to encode
Zigina way similar to how it is encoded by face recognition
models. The first level is responsible for this process, and
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Fig. 7. Expression manipulation on MZFPA. For every group of images (three images together form a group), the left, middle and right images represent the
input faces, generated expressions and images with the target expressions, respectively. (a): ‘Normal’ to ‘Happy’; (b): ‘Normal’ to ‘Surprise’; (c): ‘Happy’ to
‘Normal’; (d): ‘Happy’ to ‘Surprise’; (e): ‘Surprise’ to ‘Normal’; (f): ‘Surprise’ to ‘Happy’.
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Fig. 8.

we introduce Zy to supervise the embedding encoding and
separation process. Note that Zy is the feature embedding
extracted by the recognition model LightCNN [108] from the
normalized face I, with a canonical view [51] and a neutral
expression. The loss function can be termed as:

Lia = 1Zia — LAN)Il2, 5)

where L(-) and | - || denote the discriminative features
extracted by LightCNN and the vector 2-norm, respectively.
The same strategy is also applied while generating faces with
arbitrary poses, where identity information should also be well
preserved. This calls for the utilization of perceptual loss [109]
over the source image I;, and the generated face image imr:

Lper = IL(A1ar) — L) 12, (6)

For the second level of FDM, 21 is further fed into
the encoder E, to generate Z> which denotes the complete
deformation information. We separate Z, into parts repre-
senting different attributes, 1e VA pose for pose and Zexpr
for expressmn 7 pose and Z.,r are encoded into one-hot
codes C pose and Cexpr indicating different classes of poses
and expressions, respectively. We impose separate constraints
on the split representations to achieve disentanglement. The
cross-entropy loss function is introduced to measure the
differences between the predicted codes {éexpr, épose} and
the target codes {Cexpr, Cpose}, Which are encoded from
attribute labels. The corresponding loss functions can be

(0°,0%

(0°,15%) (0°,30%) (0°,45°%)

(0°,60%)

(0°,75%)  (-15°0°) (-30°,0%)

Synthesis results of different target poses in the MZFPA dataset, denoted as (pitch angle, yaw angle).

mathematically formulated as:

Epuse == 2 Cpoc tog (Choe) ™
Lopr = — Z Chiprlog (Chiyy) ®)

where k denotes the class indexes of the specific face attribute.
To ensure that the FDM disentangles the identities and
deformations as expected, we introduce target image I;, to
supervise the generation process with a reconstruction loss
function that is formulated as,
£rec = Liar — Larll1. 9)
The corresponding embedding triplet < Z;g4, Cexpr, Cpose >
is needed when the decoder generates a face image after
disentanglement.

C. Overall Loss Function

1) Adversarial Loss: Our network is developed under the
frame of GAN [23]. The generator Gy, generates faces with
desired deformations I, and the discriminator D plays a
min-max game, which can be defined as:

Ladv = I[‘Eltar"’IP)m\in (Trar) [log D (Itar)]

+Er1,~Po ) [log (1 — D (Gog @in))] - (10)
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TABLE I

RANK-1 RECOGNITION RATES (%) ACROSS VIEWS, ILLUMINATIONS, AND
SESSIONS UNDER SETTING 2 OF DATASET MULTI-PIE. TABLE A
GIVES THE RESULTS OF FA-GAN COMPARED WITH OTHER
STATE-OF-THE-ART METHODS. TABLE B SHOWS THE
ABLATION STUDIES ON L per, THE FDM, AND THE GPM,
RESPECTIVELY. OURS w/ GPM! DENOTES THAT FACE
IMAGES ARE CROPPED REGULARLY AS THE RIGHT
ONE SHOWN IN FIG. 4. TABLE C SHOWS THE
IMPACT OF VARYING PARAMETERS ON
THE FINAL RESULTS

Method +15°  £30° £45° +£60° £75° £90°
A. Methods Comparison
FIP + LDA [105] 90.7 80.7 64.1 45.9 - -
MVP + LDA [106] 92.8 83.7 72.9 60.1 - -
CRF [107] 95.0 88.5 79.9 61.9 - -
DR-GAN [35] 94.0 90.1 86.2 83.2 - -
FF-GAN [29] 94.6 92.5 89.7 85.2 77.2 61.2
TP-GAN [28] 98.7 98.1 95.4 87.8 77.4 64.6
CAPG-GAN [36] 99.8 99.6 97.3 90.6 83.1 66.1
MZ2FPA [31] 100 99.8 99.5 96.2 88.7 75.3
RL-WGAN [99] 98.2 97.5 96.7 91.7 86.1 75.1
Ours 100 100 99.9 99.9 94.3 75.9
B. Ablation Study I
Baseline 98.7 97.9 95.1 92.6 81.4 57.9
w/ Lper 99.9 99.1 96.9 93.5 81.7 60.4
w/ Lper + FDM 100 100 99.9 98.6 91.2 73.4
Ours w/ GPM* 100 100 99.9 98.9 93.6 73.8
Ours 100 100 99.9 99.9 94.3 75.9
C. Ablation Study II
Aposes Aezpr = 1 99.9 99.8 99.5 99.6 92.4 69.9
Aposes Aeapr = 0.1 100 100 99.9 99.9 94.3 75.9
Aposes Aezpr = 0.01 100 100 99.6 99.9 95.5 72.8
Aposes Aezpr = 0.001 99.9 99.9 99.3 97.7 86.1 56.6
Ours 100 100 99.9 99.9 94.3 75.9

2) Overall Loss: The overall loss function L;yq in our
approach is denoted as:

Etotal = iaduﬁadu + j«recﬁrec + /lperﬁper + /Ipﬁp

+ j«idﬁid + j«poseACpose + /lexprﬁexpr, (11)

where we set Aqdy, Arecs j«per» j«p’ Aid» j«pose’ and /Iexpr to 1,
50, 1, 50, 0.01, 0.1, and 0.1, respectively.

D. Training Strategy

As discussed in the previous sections, our model is trained
in a supervised manner, which means that the target face
and the target face parsing map pairs, i.e., {L;;, L, }, and
{Lin, I, } pairs, are needed. Note that in the training phase, I,
alternatively takes different responsibilities, as shown in Fig. 5.
The training iterations are randomly divided into two sets. For
Set 1, the target images I;,, are exactly the same as the input
images I;,. This indicates that these iterations are responsi-
ble for reconstruction by feeding the decoder G; with the
extracted < Z-d, éexpr, C’pose >. For Set 2, I;,, maintains the
same identity with randomly selected deformation attributes.
Thus, we utilize < Z-d, Cexpr> Cpose > as the input of G1. The
training strategy makes it possible for the FDM to disentangle
identities with other deformation attributes, and enables the
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TABLE II

FACE RECOGNITION RATE (%) RESULTS FOR DATASETS IN THE WILD.
THE LEFT AND RIGHT PARTS SHOW THE VERIFICATION ACCURACY ON
LFW AND THE RECOGNITION RESULTS ON IJB-A, RESPECTIVELY

LFW UB-A
Method Verification Method Recognition
ACC AUC Rank-1 Rank-5
TP-GAN [28] 96.13  99.42 DR-GAN [35] 85.5+£1.5 94.7+1.1
LightCNN [108]  99.39 99.87 LightCNN [108] 93.0+1.0 -
CAPG-GAN [36] 99.37 9990 FF-GAN [29] 90.240.6  95.440.5
Ours 99.46 99.93 Ours 95.4+0.7 98.1+0.2

Fig. 9.  Synthesis results on Multi-PIE on the pose of 90°. (a) Profiles;
(b) Ours; (c) TP-GAN; (d) CAPG-GAN; (e) Canonical.

trained model to be used for generating face images with the
desired deformations.

IV. EXPERIMENTS

To evaluate the performance of our proposed FA-GAN,
we conduct experiments in both constrained and unconstrained
environments. We consider the Multi-PIE dataset [30] and
the M2FPA dataset [31] which are large-scale datasets
captured in constrained environments. In addition, the in-
the-wild LFW [41] dataset, IJB-A dataset [19] and
Megaface dataset [42] are involved in our experiments.
Moreover, we utilize CASIA-WebFace and the augmented
CASIA-WebFace to respectively train 8 widely used face
recognition models, including ArcFace [43], CosFace [44],
SphereFace [45], VGGFace [11], MobileFace [46],
FaceNet [47], AdaCos [13] and CurricularFace [8]. We make
comparisons with state-of-the-art methods qualitatively and
quantitatively and provide in-depth analyses. Furthermore,
ablation studies are conducted to evaluate the efficiency and
necessity of the proposed FA-GAN, the GPM, the perceptual
loss function, the different graph initialization strategies, and
the values of hyperparameters.

A. Datasets

Multi-PIE [30] is developed for face-related work and
includes 337 different identities, each identity is captured
with 20 illumination levels and 13 poses. Following the
protocol in [28], we utilize only the face images with neutral
expressions under the 20 illumination levels and 13 poses
in Multi-PIE. The first 200 identities are used for training,
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TABLE III

RANK-1 RECOGNITION RATES (%) ACROSS VIEWS, ILLUMINATIONS, AND SESSIONS UNDER SETTING 2 OF DATASET M2FPA.
DEGREES ARE STRUCTURED AS (A°, B°®), WHERE A° DENOTES THE PITCH ANGLE AND B° DENOTES THE YAW ANGLE

Method (0°,£15°)  (0°,£30°)  (0°, £45°) (0°, £60°) (0°, £75°) (0°, £90°) (+15°,0°) (- 15°,0°) (+30°,0° (- 30° 0°)
LightCNN [108] 100 100 99.8 98.6 86.9 51.7 100 99.9 99.7 98.6
DR-GAN [35] 98.9 97.9 95.7 89.5 70.3 355 99.1 98.1 93.8 91.7
TP-GAN [28] 99.9 99.8 99.4 97.3 87.6 62.1 99.8 99.9 99.7 98.2
CAPG-GAN [36] 99.9 99.7 99.4 96.4 87.2 63.9 99.8 99.8 98.8 98.9
M2FPA [31] 100 100 99.9 98.4 90.6 67.6 99.9 99.9 99.7 98.9
Ours 100 100 99.9 98.7 90.5 68.5 100 100 99.7 99.1
TABLE IV

VERIFICATION RESULTS OF DIFFERENT RECOGNITION MODELS ON THE LFW DATASET. FOR EACH MODEL, THE FIRST ROW ILLUSTRATES THE RESULTS
OF MODELS TRAINED ON THE ORIGINAL CASIA-WEBFACE DATASET, AND THE METHOD NAMES ENDING IN “_5w” INDICATE THE MODELS ARE
TRAINED ON THE CASIA-WEBFACE DATASET AUGMENTED WITH 50,000 IMAGES

Method AUC (%) EER (%) TPR@FPR=1% (%) TPR@FPR=0.1% (%) TPR@FPR=0.01% (%)
ArcFace [43] 99.50 3.10 94.03 86.07 59.20
ArcFace_5w 99.87 1.40 98.40 94.53 73.30
SphereFace [45] 99.49 3.10 94.10 79.53 76.13
SphereFace_5w 99.70 2.46 95.53 82.13 77.13
CosFace [44] 99.73 1.70 97.60 91.10 81.40
CosFace_5w 99.89 1.16 98.83 95.40 88.13
VGGFace [11] 98.53 6.47 82.43 69.77 51.80
VGGFace_5w 99.12 343 90.92 87.42 70.34
MobileFace [46] 98.97 5.00 85.80 56.60 15.10
Mobile_5w 99.75 2.00 96.93 86.80 80.30
Facenet [47] 99.04 4.83 87.23 62.20 46.00
Facenet_5w 99.46 3.37 92.03 78.97 50.73
AdaCos [13] 99.61 2.80 94.27 83.70 76.63
AdaCos_5w 99.66 3.27 96.17 89.97 79.73
CurricularFace [8] 99.79 5.60 90.27 86.73 85.23
CurricularFace_5w 99.81 5.49 90.56 87.13 86.59

and the remaining 137 are used for testing. Hence, there is
no overlap between the data for training and testing. During
testing, we choose the normalized face images with canonical
views and natural illumination for each identity to establish
the gallery set.

M2FPA [31] is a newly introduced dataset for face
recognition and manipulation. It includes 229 subjects with
4 attributes and 62 poses. The protocol provided in [31] is
used, which means 162 subjects are selected for training,
and the remaining 67 subjects are used for testing. The
gallery set is composed of the normalized face images with
canonical views, neutral attributes, and above illumination.
There are 105,056 and 67 images in the probe and gallery
sets, respectively.

Different from Multi-PIE and M2FPA, the datasets that we
discuss in the following section include data from real-world
scenarios. The images are crawled from the internet rather than
obtained under predefined constrained environments. Thus,
there are more variations in pose, expression, resolution,
imaging device, and other factors, which make the datasets
more challenging.

Specifically, CASIA-WebFace is a large-scale public dataset
for training face recognition models collected by [20] in 2014.
It contains 10,575 identities with 494,414 images in total.

Because of its diversity in images and popularity in face
recognition tasks, we utilize it as the training set for all our
recognition models. LFW [41] is one of the earliest datasets
collected in unconstrained environments, including 5,749 sub-
jects and 13,233 images. IJB-A [19] contains 500 subjects with
5,712 images and 20,412 video frames. IJB-A is more chal-
lenging than LFW since various extreme poses are contained
in the dataset. MegaFace [42] contains 690,572 identities and
1,027,060 images collected from Flickr Creative Commons.
It is the first face recognition algorithm test standard at
the million-scale level. All these datasets are authoritative
and widely used evaluation indicators of face recognition
performance. Thus, we also use them for evaluation and further
comparisons.

B. Reproducibility

Before we provide the experimental details, all the images
from the abovementioned datasets need to be addresseed in the
same way. First, we detect their landmarks using three-level
cascaded convolutional networks [21] and align them. Second,
all the images are resized to 128 x 128 resolution. Note
that we train the FA-GAN in a supervised manner. For each
input image, the target face image and the corresponding face
parsing map pairs, i.e., {Iin, I;ar}, and {I;;,1,}, are needed.
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TABLE V

VERIFICATION RESULTS OF DIFFERENT RECOGNITION MODELS ON THE [JB-A DATASET. FOR EACH MODEL, THE FIRST ROW ILLUSTRATES THE
RESULTS OF MODELS TRAINED ON THE ORIGINAL CASIA-WEBFACE DATASET, AND THE METHOD NAMES ENDING IN “_5w” INDICATE THE
MODELS ARE TRAINED ON THE CASIA-WEBFACE DATASET AUGMENTED WITH 50,000 IMAGES

Method AUC (%) EER (%) TPR@FPR=1% (%) TPR@FPR=0.1% (%)
SphereFace [45] 95.13+0.59 10.96+0.66 73.43+1.54 53.73+3.66
SphereFace_5w 97.24+0.29 8.43+£0.59 73.314£2.25 47.56£3.09
CosFace [44] 97.7410.25 7.17+0.46 76.01£3.05 44.47+6.51
CosFace_5w 98.30+0.24 5.80+0.60 86.82+1.43 71.48+5.67
VGGFace [11] 87.7640.70 18.34+0.48 52.00+£7.88 27.52+4.40
VGGFace_5w 93.471+0.44 10.214+0.40 58.90+3.65 34.53+2.21
MobileFace [46] 92.374+0.57 15.0240.55 51.00£3.08 28.35+4.46
MobileFace_5w 97.214+0.31 8.2210.45 76.28+3.48 43.50+10.96
Facenet [47] 93.754+0.57 11.6240.84 72.53+2.25 55.58+2.68
Facenet_5w 97.28+0.36 8.23+£0.72 77.71£2.67 55.03+5.89
AdaCos [13] 96.511+0.40 9.38+0.71 71.03+3.46 45.21+8.48
AdaCos_5w 97.03+0.54 9.55£0.65 75.14+3.10 56.59+4.00
CurricularFace [8] 97.3910.60 17.25+1.00 73.63£2.34 60.11+£1.70
CurricularFace_5w 97.67+0.77 17.49+0.62 75.18+1.79 62.80-+1.80
TABLE VI

RECOGNITION RESULTS OF DIFFERENT RECOGNITION MODELS ON THE IJB-A DATASET. FOR EACH MODEL, THE FIRST ROW ILLUSTRATES THE
RESULTS OF MODELS TRAINED ON THE ORIGINAL CASIA-WEBFACE DATASET, AND THE METHOD NAMES ENDING IN “_5w” INDICATE THE
MODELS ARE TRAINED ON THE CASTA-WEBFACE DATASET AUGMENTED WITH 50,000 IMAGES

Method Rank-1 (%) Rank-2 (%) Rank-3 (%) Rank-4 (%) Rank-5 (%)
SphereFace [45] 79.27+1.28 84.29+1.14 86.8610.96 88.35+1.03 89.41+1.07
SphereFace_5w 82.11+1.91 87.38+1.65 89.81+1.37 91.35+1.19 92.40+1.12
CosFace [44] 89.4640.85 91.97+0.66 93.14+0.59 93.71+0.72 94.2240.76
CosFace_5w 91.41+0.81 93.64+0.73 94.77+0.79 95.29+0.80 95.79+0.73
VGGFace [11] 73.61+£1.91 80.64+1.42 84.24+1.65 86.07+1.37 87.6+1.48
VGGFace_5w 82.25+1.60 90.98+1.11 92.01+0.89 94.03+0.91 94.49+1.07
MobileFace [46] 73.79+1.49 81.58+1.64 85.37+1.56 87.87+1.41 89.56+1.52
Mobile_5w 84.29+1.32 87.39+1.17 89.07+1.12 90.28+1.12 91.00+1.08
Facenet [47] 83.7242.01 88.2441.42 90.22+1.17 91.39+£1.25 92.17+£1.18
Facenet_Sw 85.71+1.34 89.91+0.96 92.91+0.91 93.35+0.86 94.14+0.74
AdaCos [13] 82.94+1.49 87.07+1.36 89.20+1.15 90.71£1.10 91.68+£1.15
AdaCos_5w 82.724+1.38 89.67+1.51 90.72+1.46 92.74+1.09 93.17+1.06
CurricularFace [8] 85.81£1.05 90.554+1.07 92.97+1.03 94.44+1.03 95.57+£1.18
CurricularFace_5w 86.41+1.39 90.80+1.04 93.19+0.94 94.68+1.20 95.71+1.26

1) FA-GAN: The subnetworks architectures, including three
encoders Ej, E;, E3 and two decoders Gi, Gp, of the
proposed FA-GAN are shown in Fig. 6. The preprocessed
I;, is fed into the GPM and FDM simultaneously. At the
GPM branch, the cropped image regions are passed into dif-
ferent fully connected (FC) layers to produce one-dimensional
vectors x; as the outputs. Here, x; is used to initialize the
graph G = {V, E} with the nodes v; € V and the ran-
domly predefined adjacency matrices as corresponding edges
e; € E. After processing by two GCNs, we obtain the learned
embedding features G”. It is input to G, to generate ip.
Furthermore, for the other FDM branch, I;, is encoded by
E| and E, to get disentangled embeddings Z-d, 7 pose and
2expr. In addition, ip is introduced here as one of the
inputs before the last BatchNorm layer of E; after processing
by Ej3.

We implement our networks using PyTorch. To evaluate the
Multi-PIE and M?FPA testing sets, we use the corresponding
training sets to train two separate models. Our model is trained
for 10 epochs with one NVIDIA Tesla V100S for approxi-
mately 8 hours, occupying 32G GPU. The computing demand
is 18.5 GFLOPs in one forward modeling. Following [31],
the Adam [110] optimizer is employed during training with a
learning rate of 2e-4 for Multi-PIE and le-4 for M?FPA. The
batch size is set to 48.

2) Recognition Models: To make a fair evaluation, we train
the evolved recognition models in the same way. ArcFace [43],
CosFace [44], and SphereFace [45] share the Backbone
network ResNet [111] with the cross-entropy loss. Follow-
ing [43], the batch size is set to 512 for images in 128 x 128 x 3.
We set the initial learning rate to 0.1, which it is divided by
10 every 35 epochs. The weight decay and momentum are
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Fig. 10. Synthesis results for augmenting CASIA-WebFace. Part A and Part B give the interclass results, and Part C shows the intraclass results, where (14),
(15) belong to the same person and (29), (30) belong to the same person. Moreover, Part B concentrates on the input images with uneven lighting conditions.
Columns (a) and (b) are input images and predicted parsing maps respectively. Columns (c), (d), (e), (), (g), and (h) depict the synthesized profiles with

angles of —75°, —60°, —45°, +45°, +60°, and +75°, respectively.

initialized as Se-4 and 0.9, respectively. We train the models
until convergence for at most 125 epochs with one NVIDIA
Tesla V100S. All of the models are trained on the original
CASIA-WebFace and augmented CASIA-WebFace datasets to
evaluate the performance of our FA-GAN.

C. Quantitative Analyses

Evaluating the face recognition accuracy of recognition via
generation 1s a common quantitative metric to assess the
effectiveness of models. In this section, we conduct extensive
recognition experiments in both constrained and unconstrained
environments to evaluate the identity-preserving ability of our
network.

1) FA-GAN: As shown in Table I, the rank-1 recog-
nition rate of our proposed FA-GAN on the Multi-PIE
dataset is compared with those of its competitors, includ-
ing FIP+LDA [105], MVP+LDA [106], CRF [107], DR-
GAN [35], FF-GAN [29], TP-GAN [28], CAPG-GAN [36],
MZ2FPA [31] and RL-WGAN [99]. The results prove that our
model is comparable with all the aforementioned approaches.
Table III reports the detailed evaluation results on the M2FPA
database, where the performance of our FA-GAN is also satis-
factory compared with those of DR-GAN [35], TP-GAN [28],
CAPG-GAN [36] and M2FPA [31].

Experiments on Multi-PIE and M?FPA show that the pro-
posed FA-GAN works well under constrained environments.
Moreover, as shown in Table II, the results on the LFW and
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TABLE VII

RANK-1 RECOGNITION RATES (%) WITH 1M DISTRACTORS
OF DIFFERENT RECOGNITION MODELS ON MEGAFACE
CHALLENGE 1 [42] USING FACESCRUB AS THE PROBE

SET. THE “SMALL” PROTOCOL INDICATES THAT THE
MODEL Is TRAINED WITH FEWER THAN 0.5M IMAGES.
FOR EACH MODEL, THE FIRST ROW ILLUSTRATES
THE RESULTS OF MODELS TRAINED ON THE
ORIGINAL CASTIA-WEBFACE DATASET,

AND THE METHOD NAMES ENDING IN
“_5w” INDICATE THE MODELS ARE
TRAINED ON THE CASIA-WEBFACE
DATASET AUGMENTED WITH
50,000 IMAGES

Method Protocol Rank-1 (%)
SphereFace [45] Small 72.71
SphereFace_5w Small 73.64
CosFace [44] Small 77.11
CosFace_5w Small 84.12
MobileFace [46] Small 57.99
Mobile_5w Small 73.12
Facenet [47] Small 70.49
Facenet_5w Small 71.83
CurricularFace [8] Small 77.47
CurricularFace_5w Small 80.28
ArcFace [43] Small 77.50
ArcFace_5w Small 80.59

IJB-A datasets further demonstrate the effectiveness of our
proposed method in unconstrained environments. It can be
observed that we obtain comparable results on these datasets
in terms of face recognition and verification. Despite the fact
that our model is trained under constrained environments,
its identity-preserving ability can be well-adapted to real-life
scenarios.

To verify the effectiveness of each component of the
FA-GAN, we conduct ablation studies and report quantitative
results. In Table I, we find that the network with the FDM
outperforms the baseline. With the addition of the GPM to
our model, the recognition task on Multi-PIE performs even
better, suggesting that both the FDM and the GPM blocks
are effective. Note that the results show that different graph
initialization with different image cropping strategies also
influence the performance of the GPM. We can observe that
the perceptual loss function boosts the performance of the
network. As shown in Table I. C, we also conduct experiments
on varying parameters. We follow [36] to set Aqqv, Arecs 4pers
and 4, and apply grid search to tune other parameters.

2) Recognition Models: We train the selected recognition
models with the original CASIA-WebFace and the augmented
CASIA-WebFace separately, and the results are depicted in
Table IV, V, VI, and VIIL. It is noticeable that all the recog-
nition models acquire performance improvements in terms of
recognition rates, Equal Error Rate (EER) and Area Under
Curve (AUC) to some extent. Most models achieve a dramatic
increase in True Positive Rate (TPR). For example, TPR@FAR
= 0.1% of CosFace increases from 44.47% to 71.48%, which
is a relative improvement of 60%. MobileFace performs
even better in terms of TPR@FAR = 0.1%, increasing from
28.35% to 43.5%, which is a relative improvement of 70%.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

The variances of these evaluation metrics on most recognition
models also decrease to varying degrees, indicating that the
models become more stable after being trained on the aug-
mented datasets. Although the TPR of SphereFace decreases
slightly, it falls within an acceptable margin.

D. Qualitative Analyses

To qualitatively analyze the performance of our proposed
FA-GAN, we further provide the visualization results. Fig. 7
demonstrates the outstanding ability of our proposed network
to disentangle and manipulate expressions under different
poses on the M>FPA dataset. Fig. 8 gives the synthesis results
of different target poses, demonstrating the identity-preserving
ability of the FA-GAN. For comparison, the results of the
state-of-the-art methods on Multi-PIE can be found in Fig. 9.
The generated faces used for augmenting CASIA-WebFace
can be found in Fig. 10, where Parts A and B demonstrate the
interclass results while Part C gives the interclass results. For
each input image, we give the predicted parsing map of the
corresponding normalized face and the synthesized results of 6
different poses. It can be found that our model is also robust
under occlusion. For example, for input (1), the FA-GAN
identifies the target person accurately with regard to the lady as
background, which should be credited to GPM. For input (28),
the glasses belong to deformation-irrelevant attributes and are
well preserved as part of geometry information. Moreover,
the network is also skilled in managing uneven lighting,
as shown in Fig. 10 Part B. It can be observed that the left faces
and right faces of these images are under different lighting
conditions, and the generated profiles adapt to these conditions
appropriately.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel graph-based two-stage Face
Augmentation Generative Adversarial Network to augment
existing datasets for deformation-invariant face recognition.
It not only disentangles the identity representations to improve
the face recognition accuracy, but also utilizes the disentangled
representations to manipulate face attributes. We also introduce
Graph Convolutional Networks to explore high-level interrela-
tions between different face regions to better preserve the geo-
metric information. Extensive experiments are conducted on
face recognition and face synthesis tasks to demonstrate that
our proposed network acquires a good identity-preserving abil-
ity from constrained datasets. This ability is also well-adapted
to real-life environments while manipulating faces with desired
deformations; thus, proving the effectiveness and generaliza-
tion ability of our approach.

In the future, we would like to make the framework more
flexible and generalized for deformation-invariant person re-
identification. Moreover, considering the trend of using less
data, transferring the FA-GAN from a fully-supervised frame-
work to a semi-supervised one would also be interesting.
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