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Abstract— Near-infrared-visual (NIR-VIS) heterogeneous face
recognition (HFR) aims to match NIR face images with the
corresponding VIS ones. It is a challenging task due to the
sensing gaps among different modalities. Occlusions in the input
face images make the task extremely complex. To tackle these
problems, we present a Saliency Search Network (SSN) to extract
domain-invariant identity features. We propose to automatically
search the efficient parts of face images in a modality-aware man-
ner, and remove redundant information. Moreover, the searching
process is guided by an information bottleneck network, which
mitigates the overfitting problems caused by small datasets.
Extensive experiments on both complete and partial NIR-VIS
HFR on multiple datasets demonstrate the effectiveness and
robustness of the proposed method to modality discrepancy and
occlusions.

Index Terms— Heterogeneous face recognition, near infrared-
visible matching, information bottleneck, neural architecture
search.

I. INTRODUCTION

FACE recognition in controlled environments has achieved
stunning results [1]–[5], with accuracy even higher than

that achieved by human beings. However, the performance
of face recognition methods in real circumstances is still
restricted by some bottleneck factors, including variations of
sensing modalities, illumination, and so on [6]–[12]. These
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factors cause severe domain discrepancies that result in perfor-
mance degradation, thus prompting the task of Heterogeneous
Face Recognition (HFR). In this paper, we focus on near-
infrared-visual (NIR-VIS) HFR [13], which aims to match
captured partial near-infrared (NIR) images with the corre-
sponding visual (VIS) images. Specifically, NIR cameras pro-
vide an inexpensive solution to capture face images in extreme
lighting conditions while preserving identity information to
the utmost extent. Thus, they are widely assembled in mobile
devices, monitoring video cameras, and other applications.
Since the enrolled template face images are usually in the
VIS domain, NIR-VIS HFR is urgently needed.

NIR-VIS HFR has been widely used in security fields,
including e-commerce, and security checks. Recently, under
this COVID-19 pandemic period, to facilitate epidemiological
investigations and epidemic prevention, personnel control has
been strengthened, where NIR-VIS HFR plays an essential
role. In traditional NIR-VIS HFR, complete NIR face images
are needed during the matching process. However, it has
become a new normal that people go out wearing their goggles
and/or masks to avoid COVID-19. The risk of infection will
increase if people take off their masks each time complete NIR
facial images must be obtained. Thus, matching occluded
NIR face images with enrolled VIS images, termed as partial
NIR-VIS HFR, is desiderata.

Some studies have focused on NIR-VIS HFR. Recently,
methods based on deep learning networks have attracted
considerable attention. For instance, Liu et al. [14] proposed
a triplet loss to reduce intra-class variations, as well as
to augment the training dataset. Saxena and Verbeek [15]
utilized a CNN pre-trained on VIS images to perform HFR.
Wu et al. [16] introduced the Disentangled Variational Repre-
sentation (DVR) to decouple an intrinsic variable for identity
in both the NIR and VIS face images. These methods attempt
to explore domain-invariant features in face images of different
modalities; in other words, they only focus on identity-related
information in face images and ignore other features.

However, while dealing with partial NIR-VIS HFR, these
domain-invariant methods still face challenges that are three-
fold: 1) Domain discrepancies. Different sensory devices are
adopted to capture NIR and VIS face images of the same sub-
ject, leading to big appearance differences. Moreover, NIR face
images are often captured at low resolutions under extreme
lighting conditions. These images lose some identity-related
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Fig. 1. Rank-1 face recognition rates (%) of VSANet [17], PCFH [18],
PACH [19], and Light CNN [20] on the LAMP-HQ dataset. The labels
“complete” and “maskBottom” indicate that the corresponding probes are
complete and occluded at the lower half of the face, respectively, as the face
images shown on the right side.

texture information, such as part of the hair, face cheek,
and so on. Thus, it is quite challenging to meet the inter-
modality gap and match NIR face images with the VIS ones.
2) Occlusion. Admittedly, face organs play an important part
in NIR-VIS HFR. Extra occlusions on the input NIR face will
introduce intra-modality discrepancies between partial NIR
face images with complete ones, severely disrupting the model
performance. As shown in Fig. 1, if we occlude the lower
half of the face, the recognition accuracy of existing methods
drops dramatically by 33%∼46%. 3) Small dataset. The scale
of NIR-VIS datasets [17], [21]–[23] is rather small compared
with that of other face datasets. For instance, the largest and
newest dataset in NIR-VIS HFR, namely LAMP-HQ [17],
contains 573 subjects with 73,617 images in total. There are
approximately 10M images of 100k celebrities in the training
set of the commonly used VIS face dataset MS-Celeb-1M [24],
which is notably larger than the LAMP-HQ dataset. Training
models with small datasets is more likely to suffer from the
overfitting problem.

We aim at developing a framework to tackle the afore-
mentioned issues. Luckily, We found that the recognition
models focus on different face parts while dealing with images
from different modalities or different subjects of the same
modality. As shown in Fig. 2, we present the visualization
of feature maps produced by Light CNN [20]. The more red
a map area is, the more active the corresponding pixels in the
recognition process. Thus, if we develop a mechanism that
can automatically and self-adaptively find the most efficient
and active parts of every face image, namely, the salient
field, we can reduce the interference from inactive parts, thus
decreasing both inter- and intra-modality discrepancies.

Based on this assumption, we propose a Saliency Search
Network (SSN) with a novel pixel selection block (PSB)
responsible for searching salient fields at the pixel level.
Images from different domains own different PSBs. Note that
every pixel is selected with a specific weight between 0 and 1.
This strategy enables the active pixels to participate more in
face recognition. Either the inactive parts of complete NIR
face images or the occluded pixels in partial NIR face images
are disabled, thus enhancing the quality and efficiency for
representation learning.

Note that it is not easy for models to search salient fields
with manual design. The randomness of salient fields is
reflected in position and intensity. In other words, every pixel
can be selected or abandoned, with the weights of chosen
pixels range from 0 to 1, leading to a large number of
combinations that form an enormous search space. Moreover,
the salient field of every face image differs from each other,
making the process extremely challenging. Inspired by the
Neural Architecture Search (NAS) strategy, we introduce an
automatic feature search (AFS) algorithm to perform the
search process to improve the network’s efficiency and accu-
racy. The AFS algorithm automatically and self-adaptively
adjusts the selected salient fields based on the validation
results. Specifically, we follow DARTS [25] to perform a con-
tinuous search that is compatible with the stochastic gradient
search technique.

To address the overfitting and false correlation problems
caused by small datasets, we further equip our saliency search
with an information bottleneck (IB) trade-off. The information
bottleneck aims to compress inputs without sacrificing the
ability to accurately predict the labels. Only preserves identity-
relevant information is preserved, and other information is
compressed out. Thus, the proposed SSN is able to produce
optimal feature representations.

We conduct extensive experiments on multiple datasets,
including the CASIA NIR-VIS 2.0 Face dataset [22],
the Oulu-CASIA NIR-VIS dataset [23], the BUAA-VisNir
Face dataset [21], and the LAMP-HQ dataset [17]. Qualita-
tive and quantitative analyses demonstrate that our proposed
network surpasses other methods in the task of NIR-VIS HFR,
especially partial NIR-VIS HFR.

Our main contributions can be summarized as follows,
• Based on our findings that the effective parts of face

images in different modalities differ from each other,
we propose a novel modality-aware network, namely
Saliency Search Network (SSN), to explore domain-
invariant features in the task of NIR-VIS HFR. The
proposed pixel selection block (PSB) enables the active
parts for face recognition, as well as disable inactive
parts. The selection strategy reduces interference from
redundant information.

• We present an automatic feature search (AFS) algorithm,
which automatically optimizes the searching results to
produce the optimal solution. The searching efficiency
and accuracy are drastically improved.

• We introduce an information bottleneck (IB) as guidance
for the search process. By adjusting the IB trader-off, our
proposed SSN is able to address the overfitting and false
correlation problems caused by small-scale datasets.

• Extensive qualitative and quantitative results prove that
the proposed SSN performs better than other existing
methods in the task of NIR-VIS HFR, especially when
extra occlusions are introduced.

II. RELATED WORK

A. Face Recognition

Face recognition has always been an active area for years
since it plays an important role in both academic research and
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Fig. 2. Visualization of feature maps produced by Light CNN [20]. The
dashed line indicates that the images are from the same identity.

real-world applications. Researchers have made tremendous
efforts to push the frontiers [1]–[12], [26]–[28]. For instance,
Zhao et al. paid attention to pose-invariant face recognition and
propose a series of works. They designed advanced Generative
Adversarial Networks (GANs) with dual paths [6] or dual
agents [5], and introduced the information from 3D faces to
2D ones [7], [26] to better recover the lost information. They
achieved photorealistic and identity preserving profile/frontal
face synthesis even under extreme poses. Apart from poses,
there are also many other factors influencing the face recogni-
tion accuracy, including illumination, age, and so on [9], [11].
All these challenges inspire researchers to keep moving for-
ward and exploring.

1) Heterogeneous Face Recognition: Heterogeneous face
recognition (HFR) [29], [30] refers to face recognition and
matching across different visual domains. In most cases,
the gallery for heterogeneous face recognition problems con-
sists of visible light photos, while probes are pictures from
other visual domains. According to the different modalities of
the face, the current research on heterogeneous face recogni-
tion [31] mainly includes Sketch-VIS, NIR-VIS, 3D-2D, High-
Low Resolution, Profiles-Frontal Face, and so on.

The existing approaches for NIR-VIS HFR can be mainly
divided into three categories, including image synthesis meth-
ods, latent subspace methods, and domain-invariant feature
methods. The intuitive idea of the image synthesis meth-
ods [17], [31] is to transform an image of a certain modality
into an image of another modality, and then perform matching
and recognition tasks in the same modality. The synthesized
images are directly matched with an existing traditional face
recognition model, so its performance and robustness mainly
depend on the performance of the picture synthesis method.
Latent subspace methods [32], [33] are to project two different
modal images into the same subspace, so that they can be
better compared. Domain-invariant features methods [34], [35]
focus on obtaining facial features that are consistent among
different modalities.

In this paper, we focus on domain-invariant feature meth-
ods. For example, Liao et al. [36] utilized Difference-of-
Gaussian filtering to obtain a normalized appearance for
all heterogeneous faces. They then applied MB-LBP to
encode local image structures and learned the most discrim-
inant local features. Shao and Fu [37] proposed a novel

hierarchical hyperlingual-words (Hwords) framework, as well
as a weighted distance metric, to help address to help perform
HFR for images with pose and expression variations. Saxena
and Verbeek [15] first attempted to use CNNs pretrained on
visible spectrum images to perform HFR tasks and achieved
satisfying results. This strategy was further adopted by many
other researchers. Notably, Liu et al. [14] employed an acti-
vation function, namely, Max-Feature-Map, to select discrimi-
native features. Reale et al. [38] developed a way that used
large-scale visible face recognition datasets to learn global
features in the task of HFR. Sarfraz and Stiefelhagen [35]
captured the highly nonlinear relationships among different
modalities. He et al. [34] aimed to minimize the Wasserstein
distance among the distributions of different modalities with
the proposed Wasserstein CNN. Du et al. [39] paid atten-
tion to NIR-VIS masked face recognition and addressed the
problem considering both the training data and the training
method. They adopted a 3D face reconstruction approach
to synthesize masked faces and proposed an HSST method
to extract domain-invariant face feature representations with
a semi-Siamese network. Our proposed SSN also aims at
extracting domain-invariant features, however, our process is
automatic and self-adaptive.

2) Partial Face Recognition: Occlusions on faces pose a
major challenge in the task of face recognition [40], [41].
Researchers have achieved important results from two main
perspectives. Some of them [42], [43] attempted to generate
clean and complete faces from the occluded ones; others [44],
[45] focused on extracting local face representations that only
from the nonoccluded areas. For instance, Min et al. [46]
proposed using Gabor wavelets, PCA, and Support Vector
Machines (SVM) to address the influence of scarfs/sunglasses
in face recognition. Park et al. [42] introduced a Scale Invari-
ant Feature Transform (SIFT) method to measure the sim-
ilarity and match occluded images with the nonoccluded
images. Song et al. [47] proposed using a Pairwise Differ-
ential Siamese Network (PDSN) to exploit the differences
between occluded and nonoccluded faces; in their approach,
a Feature Discarding Mask (FDA) is generated accordingly
to express the correspondence between occluded facial areas
and corrupted feature elements. Note that unlike these afore-
mentioned methods that only pay attention to occlusions in
the visual domain, we aim at addressing the occlusions across
different domains, which is much more challenging.

B. Neural Architecture Search

Deep learning can be employed to automatically learn
useful features, breaking away from the dependence on feature
engineering, and achieve excellent results that surpass those of
other algorithms in many tasks, including generation, segmen-
tation, recognition, and so on. This success is largely due to the
emergence of neural network structures, such as ResNet [48],
DenseNet [49], etc. However, designing a high-performance
neural network requires abundant professional knowledge and
extensive trial, and the cost is extremely high; these factors
limit the development and application of neural networks.
Neural Architecture Search (NAS) [25], [50] is a technology
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for automatically designing neural networks. It automatically
designs high-performance network structures based on sample
sets through algorithms. The performance of this approach
even matches the level achieved by human experts in certain
tasks, and some network structures that have not been pro-
posed by humans before have been discovered; consequently,
the use and implementation costs of neural networks have
been effectively reduced. NAS technology has been widely
applied in many areas, including object detection [51], seman-
tic segmentation [52], image classification [53], and other
fields. Inspired by NAS, we propose an automatic feature
search algorithm to help extract the active face parts in
NIR-VIS HFR.

C. Information Bottleneck

The information bottleneck (IB) concept was originally
introduced by Tishby et al. [54] as an information theory.
Given the joint probability P(X, Y) between a random variable
X and an observed relevant variable Y, IB aims at extracting
the best trade-off between complexity and accuracy while clus-
tering X. In 2017, Alemi et al. [55] first introduced this theory
to the deep learning field and proposed a variational approxi-
mation to IB. With the development of deep learning, the the-
ory of IBs has been widely used in many areas [56], [57],
including natural language processing (NLP) [58], reinforce-
ment learning [59], [60], graph encoding [61], and so on.
IBs have also received considerable attention in the com-
puter vision field, which is this focus of this study. For
example, Peng et al. [62] proposed to using an information
bottleneck as a regularization to constrain information flow
in the discriminator. The introduced variational discriminator
bottleneck (VDB) effectively improved the performance of
Generative Adversarial Networks (GANs) in the task of image
generation. Luo et al. [63] introduced a significance-aware
information bottleneck (SIB) to ease the feature alignment
and stabilize adversarial training in the task of unsupervised
semantic segmentation. Similar to these aforementioned meth-
ods, our method uses the IB concept as a trade-off mechanism
in the proposed SSN to compress input images while achieving
the highest predictive power possible.

III. METHODS

We adopt the Light CNN [20], which has been widely
employed in the task of NIR-VIS HFR, as the baseline in
the proposed Saliency Search Network (SSN). Given an input
NIR face image Iin , Light CNN encodes Iin into an identity
embedding z which is as close as possible to images in the
corresponding gallery VIS face images Igt , i.e., zgt . During
the training phase, this optimization process is supervised by
a cross-entropy loss:

Lid = −
∑

k

zk
gt log

(
zk

)

= −
∑

k

L(Ik
gt ) log

(
L(Ik

in)
)

, (1)

where k denotes the identity index for a specific person
and L(·) denotes the discriminative features extracted by
Light CNN.

As shown in Fig. 3, the gray boxes denote the original
architecture of Light CNN. Note that Light CNN is composed
of several similar blocks, where each contains a residual block
and a Max-Feature- Map (MFM) group. An MFM [20] is a
special implementation of maxout activation [64] to suppresses
low-activation neurons in each layer. For each residual block
B, given an input feature map XB ∈ RCin×W×H , the out-
put feature map is denoted as YB ∈ RCout×W �×H �

, where
C , W , and H denote the number of channels, width, and
height, respectively. For a specific position p ∈ V (V ={
(i, j) | i ≤ W, j ≤ H, i, j ∈ Z+}

), given the support region
Rr with size r , the corresponding YB(p) is computed as:

YB(p) =
∑

p�∈Rr

θc
(

p�) X
(

p + p�) p ∈ V , (2)

where θc indicates the convolutional kernel weights.
To improve the efficiency and accuracy of Light CNN,

we propose to search salient fields, i.e., a subset y of every
YB . The subset preserves identity-related information as much
as possible, and redundant information is neglected. In other
words, given output feature maps YB , we detect salient fields
y ∈ YB , which can minimize the network loss L(y, θ) after
minimizing the network weights θ . The objective function is
thus formulated as:

min
y∈YB

min
θ

L(y, θ). (3)

To automatically and self-adaptively search salient fields,
our SSN is equipped with modality-aware pixel selection
blocks (PSBs) and an information bottleneck-guided search
algorithm to define the search space and perform the saliency
search, respectively. The details of every component are dis-
cussed in the following parts. We use the presence and absence
of the superscript ˆon a variable to indicate whether it is drawn
from the distribution of the input data or that of the output data,
respectively.

A. Modality-Aware Pixel Selection Block

Different from common NAS methods that aim to search
for the optimal topology of some given network architec-
tures, we focus on searching on the space formed by the
extracted features. Specifically, we propose the pixel selection
block (PSB) to perform a pixel-level search in every interme-
diate feature map YB of the residual block B. As discussed
in Sec. I, the active parts of a given face image change with
both identity and modality variations. Thus, as shown in Fig. 3,
we apply different PSBs according to the different modalities
of the input face images. YB is then further decomposed into
Ynir

B and Yv is
B , which are feature maps extracted from images

of different illumination modalities. The complete search space
is then composed of all Ym

B , where B ∈ {1, . . . , N} and
m ∈ {nir, vi s}. Note N is the number of residual blocks.

Given a feature map Ym
B ∈ RCout×W �×H �

, a corresponding
pixel-level saliency indicator Mm

B ∈ RCout×W �×H �
is initialized

with a value of 1 at every pixel position, indicating that each
pixel in the spatial domain is selected 100% at the beginning
of the search process. During optimization, Mm

B is activated by
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Fig. 3. Overall architecture of the proposed Saliency Search Network (SSN). Our network is developed based on Light CNN [20], and the original Light CNN
architecture is represented in gray boxes. The gray dashed arrows indicate the original data flows. Given an input image Iin , we propose a modality-aware
search strategy to preserve the identity-related pixels of encoded feature maps, as well as vanish the redundant ones. The selection process is implemented by
the pixel selection block (PSB). Note that Light CNN is composed of several similar blocks, where each of them contains a ResBlock and an MFM Group.
Specifically, for each Light CNN block, we apply modality-aware PSBs. We first conduct an automatic feature search (AFS) to get the saliency indicator
Mm

B . Then, we obtain the selected feature map Ŷm
B = σ(Mm

B ) � Ym
B , where σ , m, and B denote the sigmoid function, the modality of the input image, and

the number of Light CNN blocks, respectively. Note that the search process is guided by an information bottleneck module, where the mutual information
I (Xm ; Ŷ1

m) is maximized, and I (Y1
m ; Ŷ4

m) is minimized.

a sigmoid function σ . Thus, the indicator is restricted between
0 and 1, indicating the weight that corresponding to a specific
position p in the extraction of identity information. Then,
we get parameterized output activation map Ŷm

B as:
Ŷm

B = σ(Mm
B ) � Ym

B , B ∈ {1, . . . , N}, m ∈ {nir, vi s}, (4)

where � denotes the Hadamard product.

B. Information Bottleneck-Guided Automatic Feature Search

1) Information Bottleneck: Note that the existing datasets
used for NIR-VIS HFR are often in small-scale, resulting
in overfitting and false correlation problems. To tackle these
issues and extract the most expressive information, we intro-
duce an information bottleneck trade-off to guide the search
process. Specifically, given the input Xm , the goal of our
information bottleneck (IB) is to find an optimal represen-
tation that: 1) captures identity-related information as much
as possible and 2) compresses the identity-irrelevant parts
of the input Xm to the greatest extent. Here, we select the
outputs of the first and last residual blocks as the intermediate
and final representations, i.e., Ŷm

1 and Ŷm
4 , respectively. The

optimization of IB is then denoted as:
Lib = min

Ŷm
1

I (Xm; Ŷm
1 ) − β I (Ŷm

1 ; Ŷm
4 ), (5)

where β denotes the positive Lagrange multiplier that acts as a
trade-off parameter. I (Xm; Ŷm

1 ) defines the mutual information
that represents the relevance of Xm and Ŷm

1 . The smaller
the I (Xm; Ŷm

1 ), the less relevant Ŷm
1 is to Xm . Thus, after

optimizing Eqn. 5, Ŷm
1 is as less relevant as possible to

Algorithm 1 AFS: Automatic Feature Search

Input: the saliency indicator Mm , the network weights
θ ��, the training set ST , and the testing set SE

Output: the trained network and the optimal feature
1. Split ST into Strain and Sval , which responsible for
training and valiadation during the training phase,
respectively. Note each of them takes 50% of ST

2. while not converged do
Update the saliency indicator Mm

B by descending
∇Mm

B
Lval

(
θ ��, Mm

B

)
Update the network weight θ �� by descending
∇θ ��Ltrain

(
θ ��, Mm

B

)
end
3. Train the network weight θ �� with the searched Mm

B on
ST

4. Evaluate on SE .

the input Xm , while as more relevant as possible to the
final identity representation Ŷm

4 . In this way, the intermediate
representation Ŷm

1 acts as an information bottleneck where
only the most identity-relevant information is preserved.

As declared in [65], the mutual information is defined by
the Kullback-Leibler (KL-) divergence:

I (Xm; Ŷm
1 ) = DK L

(
PXm Ŷm

1
�PXm ⊗ PŶm

1

)
, (6)

where DK L is defined as,

DK L(P�Q) := EP

[
log

dP

dQ

]
, (7)

Authorized licensed use limited to: INSTITUTE OF AUTOMATION CAS. Downloaded on November 16,2022 at 06:34:41 UTC from IEEE Xplore.  Restrictions apply. 



5008 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 4. Architecture of the module to calculate mutual information. FC and
BN denote the fully connected layer and batch normalization, respectively.
Given input feature maps P and Q, we denote randomly shuffled Q as Qs .
After inputting this result into Block1 and Block2, with architectures shown
on the right, we obtain the intermediate result P�, Q�, and Q�

s . We concatenate
P� with Q� and Q�

s separately, and further feed the concatenated result into
an FC layer. ϕ(·) represents the Softplus operation in Eqn. 10. The difference
between Po and Qo represents the mutual information (MI).

whenever P is absolutely continuous with respect to Q2.
PXm Ŷm

1
and PXm ⊗ PŶm

1
represent the joint distributions and

the product of the marginals, respectively. Thus, the larger
the KL-divergence between the joint distributions and the
product of the marginals, the stronger the dependence between
Xm and Ŷm

1 .
However, as Eqn. 6 is not optimizable by neural networks,

we further exploit the following bound by introducing a deep
neural network with parameters θ � ∈ � [65]:

I (Xm; Ŷm
1 ) ≥ I�(Xm, Ŷm

1 ). (8)

Specifically, we introduce Jensen-Shannon representa-
tion (JS) as the neural information measure as it is stable
in the optimization of neural networks. The estimated mutual
information with JS is defined as:

I J S
� (Xm, Ŷm

1 ) = sup
θ �∈�

EPXm Ŷm
1

[−ϕ (−Tθ �)]

− EPXm ⊗PŶm
1

[ϕ (Tθ �)] , (9)

where {Tθ � }θ �∈� denotes a set of functions parameterized
by a neural network to maximize the mutual information.
The supremum is taken over all functions Tθ � such that the
two expectations are finite. The ϕ(·) represents the Softplus
operation:

ϕ(x) = log
(
1 + ex) . (10)

Similarly, the mutual information between the intermediate
representation Ŷm

1 and final representation Ŷm
4 is calculated

by:
I J S
� (Ŷm

1 , Ŷm
4 ) = sup

θ �∈�

EPŶm
1 Ŷm

4
[−ϕ (−Tθ �)]

− EPŶm
1

⊗PŶm
4

[ϕ (Tθ �)] . (11)

Thus, Eqn. 5 is then reformulated as:
LI B = min

Ŷm
1

sup
θ �∈�

EPXm Ŷm
1

[−ϕ (−Tθ �)] − EPXm ⊗PŶm
1

[ϕ (Tθ �)]

− βEPŶm
1 Ŷm

4
[−ϕ (−Tθ �)]+βEPŶm

1
⊗PŶm

4
[ϕ (Tθ �)] , (12)

where β is set to 1 in our case. Note that we optimize the
parameters of the information bottleneck and the original Light
CNN network, i.e., θ and θ �, at the same time during the
training phase. For concise representation, we denote the union
of them as parameters θ ��.

2) Search Algorithm: Inspired by neural architecture search
(NAS) [25], we propose an automatic feature search (AFS)
algorithm. Different from common NAS methods that deal
with discrete operations, our saliency indicator is implemented
in a continuous space; thus, we directly apply gradient descent
in the optimization process. Let Ltrain and Lval denote the
training and validation loss, respectively. These parameters
are determined together by the saliency indicator Mm

B and the
network weights θ ��. This solution process involves a bilevel
optimization problem, where Mm

B is the upper-level variable
and θ �� is the lower-level variable:

min
Mm

B

Lval
(
θ∗ (

Mm
B

)
, Mm

B

)

s.t. θ∗ (
Mm

B

) = arg min
θ �� Ltrain

(
θ ��, Mm

B

)
. (13)

As shown in Alg. 1, the network is trained in a two-stage
way. The training set ST is randomly split into Strain and
Sval , which are responsible for training and validation during
the training phase, respectively. In the first stage, we optimize
the saliency indicator Mm

B by descending ∇Mm
B
Lval

(
θ ��, Mm

B

)
.

Then at the second stage, the network weight θ �� is optimized
by descending ∇θ ��Ltrain

(
θ ��, Mm

B

)
. θ �� is further optimized

with the searched Mm
B based on the trained ST .

C. Overall Loss Function

In general, the overall loss function of our proposed SSN
is denoted as:

Ltotal = Lid + λibLib, (14)

where λib is set to 0.001.

IV. EXPERIMENTS

To evaluate the performance of the proposed Saliency
Search Network (SSN), we conduct extensive experi-
ments on multiple datasets, including the CASIA NIR-VIS
2.0 Face dataset [22], the Oulu-CASIA NIR-VIS dataset [23],
the BUAA-VisNir Face dataset [21], and the LAMP-HQ
dataset [17]. We conduct experiments on both complete NIR
face images and incomplete ones. Moreover, to make the
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Fig. 5. Illustration of used NIR images of the four introduced datasets. The first row presents NIR probe images and the second row shows the corresponding
VIS gallery images.

TABLE I

FACE RECOGNITION AND VERIFICATION RATES (%) ON THE LAMP-
HQ DATASET. NOTE COMPLETE NIR FACE IMAGES ARE USED IN

THESE EXPERIMENTS. THE TOP GROUP INCLUDES TRADITIONAL

METHODS, AND THE BOTTOM GROUP GIVES RESULTS OF DEEP

LEARNING-BASED METHODS

experiments more persuasive, we use two types of occlusions,
namely “maskTop” and “maskBottom” to mask the complete
NIR face images. These image types are corresponding to
the eyes part and lower half of the face, respectively. For
each type of NIR face image, we compare our results with
those of other state-of-the-art methods and provide in-depth
discussion and analyses. Moreover, abundant ablation studies
are performed to evaluate the effectiveness of every single
component of our SSN. The details will are presented in the
following subsections.

A. Datasets

The CASIA NIR-VIS 2.0 Face dataset [22] is one of the
most popular datasets in the field of NIR-VIS face recognition.
It involves 725 subjects with 17,580 images in total. For each
subject, the number of NIR/VIS face images ranks from 1/5 to
22/50. Note that the NIR and VIS images of a specific person
are randomly and asynchronously captured; thus, they are
not in pairs. The images in the CASIA NIR-VIS 2.0 Face
dataset differ from each other in illumination, pose, age, and
so on, making it a challenging task to perform NIR-VIS face
recognition on this dataset.

The authors of this dataset developed two types of protocols:
View 1 for developing algorithms and View 2 for training and
testing. We follow View 2 to set our experiments. Specifically,
we perform a 10-fold experiment, where each fold contains
distinct training and testing face images. Note that to ensure
the fairness of the experiments, there is no overlap between the
training and testing sets. For each fold, there are approximately
2,500 VIS face images and 6,100 NIR ones corresponding to
about 360 subjects. During testing, 6,210 NIR and 358 VIS

TABLE II

FACE VERIFICATION AND RECOGNITION RATES (%) ON THE CASIA NIR-
VIS 2.0 DATASET. NOTE COMPLETE NIR FACE IMAGES ARE USED IN

THESE EXPERIMENTS

images of the other 358 subjects form the probe and gallery
sets, respectively.

The Oulu-CASIA NIR-VIS dataset [23] was proposed to
deal with the problems caused by illumination in face recog-
nition. There are a total of 7,680 images corresponding to
80 subjects, where 50 of them are from Oulu University, while
the rest are from CASIA. The NIR and VIS face images
are captured under three illumination conditions, including
normal indoor, weak, and dark lighting conditions. Six kinds
of expressions are also taken into consideration, i.e., anger,
disgust, fear, happiness, sadness, and surprise. Following [37],
we select 40 subjects from the Oulu-CASIA NIR-VIS dataset;
images for 20 individuals are used for training and the rest
are used for testing. For each subject, there are 48 NIR
face images and 48 VIS face images. Specifically, eight
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TABLE III

FACE VERIFICATION AND RECOGNITION RATES (%) ON THE BUAA-VISNIR FACE DATASET (LEFT) AND THE OULU-CASIA
NIR-VIS DATASET (RIGHT). NOTE COMPLETE NIR FACE IMAGES ARE USED IN THESE EXPERIMENTS

images are randomly selected from each expression for each
domain.

The BUAA-VisNir face dataset [21] is a commonly used
dataset for HFR. It contains 2,700 images from 150 subjects.
They are split into two groups: 900 images of 50 subjects for
training and 1800 images of the remaining 100 subjects for
testing. For each subject, there are nine pairs of NIR and VIS
images corresponding to nine different poses or expressions,
including neutral-frontal, left-rotation, right-rotation, tilt-up,
tilt-down, happiness, anger, sorrow, and surprise. Note for each
pair, the NIR and VIS face images are captured simultaneously
by a single multi-spectral camera.

The LAMP-HQ dataset [17] is a newly introduced large-
scale dataset to address the problems involving NIR-VIS HFR.
There are 56,788 NIR and 16,828 VIS face images of 573 sub-
jects, making it much larger than the previously discussed
datasets. The images are asynchronously captured, resulting
in unpaired NIR and VIS face images. Moreover, the images
are distinct from each other in illumination, pose, scene,
glasses, expressions, and so on, further increasing the level
of complexity. Following [17], both the training and testing
sets account for approximately 50% of the dataset. Similar to
the approach in [22], a 10-fold experimental protocol is used,
where each fold uses distinct training and testing sets chosen
randomly. Note that there is no overlap between the training
and testing datasets.

B. Reproducibility

To begin the experiments, images from all datasets are
preprocessed in the same way. First, we detect 68 keypoints of
these face images and align them using MTCNN [85]. Then,
all images are cropped and resized to a 128 × 128 resolu-
tion. The images are then used for complete NIR-VIS HFR.
As shown in the left part of Fig. 6, for partial NIR-VIS
HFR, images are further occluded by masks. We adopt two
kinds of masks here, which are “maskTop” and “maskBottom”

that corresponding to the eyes part and the lower half of the
face, respectively. Specifically, if we denote the coordinate of
point n as (xn, yn), we have “maskTop” as a rectangular with
width equals to x14 − x2, and height equals to y10 − y30.
The starting point is (x30 − 0.5width, y30). Additionally,
“maskBottom” is a bigger rectangular with a width equals
to x27 − x18 and height equals to y10 − y30 starting from
point (x18, y18).

SSN is developed based on the architecture of Light CNN.
As shown in Fig. 3, the gray boxes denote the original Light
CNN network. The dashed arrows indicate the original data
flows, which are replaced by flows through PSBs. In addition,
the search process is guided by an information bottleneck (IB)
network. As discussed in Eqn. 5, an IB is calculated by
mutual information (MI), and the detailed architecture is
shown in Fig. 4.

During training, the models for complete and partial
NIR-VIS HFR are trained separately. We follow View 2 in [22]
to perform a 10-fold training. In partial NIR-VIS HFR,
we apply masks with randomly selected sizes and positions
to the input NIR face images during every iteration of the
training phase. The model is further used during the testing
phase for different kinds of occlusions, including “maskTop”
and “maskBottom”, to assess the robustness and generalization
of the model. Moreover, to perform a fair comparison, all
the introduced comparison methods in partial NIR-VIS HFR,
including PCFH [18], PACH [19], VSANet [17], DFNet [84],
and LBAM [83], are retrained with the same masking strategy.
Note that we use models trained on the CASIA NIR-VIS
2.0 Face dataset to perform testing on the CASIA NIR-VIS
2.0 Face dataset, the BUAA-NirVis face dataset, and the Oulu-
CASIA NIR-VIS dataset. The training and testing on the
LAMP-HQ dataset are conducted individually following the
settings given in [17].

We implement our networks using PyTorch. The network is
trained in a two-stage manner with an NVIDIA Tesla V100S,
occupying 11G GPU. During the first stage, the saliency
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TABLE IV

FACE VERIFICATION AND RECOGNITION RATES (%) ON THE CASIA NIR-VIS 2.0 FACE DATASET WITH “MASKBOTTOM” AND “MASKTOP” AS THE
INTRODUCED OCCLUSIONS. FOR RESULTS OF EACH KIND OF OCCLUSION, THE GROUPS FROM TOP TO BOTTOM INDICATE THE EXPERIMENTS

OF SALIENCY DETECTION METHODS, NIR-VIS HFR METHODS, VISUAL FACE COMPLETION METHODS, AND FUSION-BASED METHODS.
NOTE THAT THE NAME OF FUSION-BASED METHODS ARE IN TERM OF “A + B”, WITH “A” AS THE NIR-VIS HFR METHOD

AND “B” AS THE OCCLUDED FR METHOD. THE METHOD NAMES ENDING IN “_ori” AND “_retrain” INDICATE THE USED
MODELS ARE OFFICIALLY RELEASED AND RETRAINED BY OUR MASKING STRATEGY, RESPECTIVELY

indicator Mm
B is updated by the AFS algorithm with an

Adam optimizer at a learning rate of 0.001. Then the network
weights θ �� is updated in the second stage. We introduce an
SGD optimizer with a learning rate of 0.0001. Our model is
trained for 12 epochs and 40 epochs for the first and second
stages, respectively. Since the structure of the framework
keeps consistent, the time complexity brought by the network
structure is O(1). Following [25], the time complexity brought
by the AFS algorithm is O(|θ ��| + |Mm

B |), where θ �� and
Mm

B denote the network weights and the saliency indicator,
respectively. The computational demand is 3.64 GFLOPS in
one forward modeling cycle. It takes about 13 minutes to train
an epoch. The inference time is about 0.03 seconds per image.
We set the batch size to 128.

C. Complete NIR-VIS HFR Analyses

For complete NIR-VIS HFR, we present the recognition and
verification accuracies achieved by traditional methods and
deep learning-based methods. Specifically, Table II presents
the results of experiments on the CASIA NIR-VIS 2.0 Face
dataset. We provide the results of DSIFT [67], Coupled Dis-
criminant Feature Learning (CDFL) [68], Gabor+RBM [69],
H2(LBP3) [37], Common Encoding Feature Discriminant
(CEFD) [70], and Recon.+UDP [71], which are traditional
methods. Most traditional methods achieve Rank-1 accuracy
that is lower than 90%, which is below the required level
in most practical applications. Later, with the development
of deep learning, methods based on neural networks have
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TABLE V

FACE VERIFICATION AND RECOGNITION RATES (%) ON THE LAMP-HQ DATASET WITH “MASKBOTTOM” AND “MASKTOP” AS THE INTRODUCED
OCCLUSIONS. FACE VERIFICATION AND RECOGNITION RATES (%) ON THE CASIA NIR-VIS 2.0 FACE DATASET WITH “MASKBOTTOM” AND

“MASKTOP” AS THE INTRODUCED OCCLUSIONS. FOR RESULTS OF EACH KIND OF OCCLUSION, THE GROUPS FROM TOP TO BOTTOM

INDICATE THE EXPERIMENTS OF SALIENCY DETECTION METHODS, NIR-VIS HFR METHODS, VISUAL FACE COMPLETION

METHODS, AND FUSION-BASED METHODS. NOTE THAT THE NAME OF FUSION-BASED METHODS ARE IN TERM OF “A + B”,
WITH “A” AS THE NIR-VIS HFR METHOD AND “B” AS THE OCCLUDED FR METHOD. THE METHOD NAMES ENDING

IN “_ori” AND “_retrain” INDICATE THE USED MODELS ARE OFFICIALLY RELEASED AND RETRAINED BY

OUR MASKING STRATEGY, RESPECTIVELY

become mainstream. We provide results of recently proposed
HFR-CNN [15], TRIVET [14], IDNet [38], Adversarial Dis-
criminative Feature Learning (ADFL) [66], Hallucination [72],
DLFace [71], W-CNN [34], Pose agnostic crossspectral hal-
lucination (PACH) [19], Residual compensation networks
(RCN) [73], MC-CNN [74], DVR [16], LLRe-rank [75], CFC-
Fuse [76], PCFH [18], VSANet [17], and ADCANs [77].
The result of Light CNN [20] is provided as the baseline of
our network. Note that the Rank-1 accuracy and verification
results of our method are significantly better than those of the
Light CNN, indicating that the proposed SSN outperforms the
baseline model. Additionally, our SSN outperforms most of
the existing methods in both accuracy and stability. Although

the standard deviation ahieved by VSANet is better than
that of our model, considering the accuracy improvement,
the difference of 0.1 is acceptable.

Table I shows the results on the LAMP-HQ dataset. The
proposed method yields much higher Rank-1 and verifica-
tion accuracy values than the recently proposed state-of-the-
art methods. Specifically, as the False Positive Rate (FPR)
decreases, the verification results sufficiently indicate the supe-
riority of our methods. As shown in Table III, the results on
the BUAA-VisNir face dataset and the Oulu-CASIA NIR-VIS
dataset are also provided. Apart from the methods discussed
in the previous paragraph, we also introduce the MPL3 [78],
KCSR [23], KPS [79], and KDSR [80] for comparison.
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TABLE VI

FACE VERIFICATION AND RECOGNITION RATES (%) ON THE BUAA-VISNIR FACE DATASET AND OULU-CASIA NIR-VIS DATASET WITH “MASKBOT-
TOM” AND “MASKTOP” AS THE INTRODUCED OCCLUSIONS. FACE VERIFICATION AND RECOGNITION RATES (%) ON THE CASIA NIR-VIS

2.0 FACE DATASET WITH “MASKBOTTOM” AND “MASKTOP” AS THE INTRODUCED OCCLUSIONS. FOR RESULTS OF EACH KIND OF

OCCLUSION, THE GROUPS FROM TOP TO BOTTOM INDICATE THE EXPERIMENTS OF SALIENCY DETECTION METHODS, NIR-
VIS HFR METHODS, VISUAL FACE COMPLETION METHODS, AND FUSION-BASED METHODS. NOTE THAT THE NAME OF

FUSION-BASED METHODS ARE IN TERM OF “A + B”, WITH “A” AS THE NIR-VIS HFR METHOD AND “B” AS

THE OCCLUDED FR METHOD. THE METHOD NAMES ENDING IN “_ori” AND “_retrain” INDICATE THE USED

MODELS ARE OFFICIALLY RELEASED AND RETRAINED BY OUR MASKING STRATEGY, RESPECTIVELY

Although some of our results are 0.1 lower than those of exist-
ing methods, our method achieves better overall performance
in most of the experiments.

D. Partial NIR-VIS HFR Analyses

To perform in-depth analyses, we introduce correlation
methods that belong to four categories. The first ones are
saliency detection methods GCPANet [81] and EGNet [82].
We first apply their models to generate the corresponding
saliency map of the input occluded NIR face images. Then
we multiply the saliency maps with input images to keep

only the salient area of each face. These faces are then fed
into LightCNN to get the recognition and verification results.
The second ones are complete NIR-VIS methods, including
PCFH [18], PACH [19], and VSANet [17]. The third ones,
including DFNet [84] and LBAM [83], pay attention to the
partial face in the VIS domain. We conduct experiments with
both their officially released models and retrained models
with our masking strategy. As shown in Fig. 6, even with
our training strategy, most of them still suffer from occlu-
sions and produce face images with obvious artifacts. Among
these methods, DFNet produces face images of the best
quality. However, these images cannot preserve the identity
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TABLE VII

ABLATION STUDY. FACE VERIFICATION AND RECOGNITION RATES (%) ON THE CASIA NIR-VIS 2.0 FACE DATASET WITH “MASKBOTTOM” AS
THE INTRODUCED OCCLUSION. SI, SI (SPLIT), AND IB INDICATE THE SALIENCY INDICATOR WITHOUT CONSIDERATION OF MODALITY,

THE SALIENCY INDICATOR CONSIDERING DIFFERENT MODALITIES, AND THE INFORMATION BOTTLENECK NETWORK, RESPECTIVELY.
NOTE OURS IS EQUIPPED WITH THE AFS ALGORITHM COMPARED WITH “w/ SI (SPILT) + IB”

Fig. 6. Synthesis results on the CASIA NIR-VIS 2.0 Face dataset [22],
the LAMP-HQ dataset [17], the BUAA-VisNir face dataset [21], and the Oulu-
CASIA NIR-VIS dataset [23]. For experiments on each dataset, the left ones
are input probe images with “maskTop” and “maskBottom” occlusions, as well
as the corresponding gallery images. The right part of the figure presents
the synthesis results of the retrained PCFH [18], PACH [19], DFNet [84],
VSANet [17], and LBAM [83]. Note for each dataset, the first row and second
row show the completion results from probe images with the “maskTop” and
“maskBottom” occlusions, respectively.

information well, resulting in reduced face recognition per-
formance. Moreover, we combine methods from the afore-
mentioned two categories and perform experiments with the
fusion-based methods, where we first apply NIR-VIS methods

to transfer the occluded NIR face images to the VIS domain,
and then utilize the impainting models to predict the missing
area for further face recognition.

The quantitative results of these methods on the CASIA
NIR-VIS 2.0 Face dataset, the LAMP-HQ dataset, the BUAA-
VisNir face dataset, and the Oulu-CASIA NIR-VIS dataset
are shown in Table IV, Table V, and Table VI, respec-
tively. We introduce both the “maskBottom” and “maskTop”
occlusions. Note that for the BUAA-VisNir face dataset and
the Oulu-CASIA NIR-VIS dataset, we directly use first-fold
models that trained on the CASIA NIR-VIS 2.0 Face dataset;
consequently, finetuning is not needed in this case. We intro-
duce equal error rate (EER), area under curve (AUC), and
true positive rate (TPR) as the metrics for evaluating face
verification performance. For most of the methods, the face
verification and recognition results increase after retrained
with the proposed masking strategy. However, the results
of our proposed SSN surpass those of others by a large
margin. For example, for Rank-1 accuracy on the CASIA NIR-
VIS 2.0 Face dataset with “maskBottom” as the occlusion,
we achieve an accuracy higher than 90% while other methods
only achieve that lower than 70%. The significant performance
improvements are attributed to the information selection ability
of our model. When most other methods are trying to empower
their models with the ability to predict more information,
we focus on maximizing the value of the given information.
Although saliency detection methods hold similar merits as
ours. They are still not suitable for this task. On the one
hand, the saliency maps they produced force the model to
make 0/1 choices, i.e., to choose or not, which can not reflect
the fine-grained importance of each pixel. On the other hand,
experiments show us that it is difficult for these models to
precisely recognize the occluded areas. Both the quantitative
and qualitative results supply strong evidence to prove the
superiority of our method.

Ablation Studies: As shown in Table VII, we also conduct
ablation studies to evaluate each component of the proposed
SSN, including the saliency indicator, the information bottle-
neck, and the AFS algorithm. The introduction of the saliency
indicator improves the model performance by a large margin.
For example, the Rank-1 accuracy increases to 86.6±1.6 from
65.7±3.3, which is a 31.8% increase with reference to the
results of the baseline. Applying different indicators according
to different modalities also contributes to the performance
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improvements. In addition, the introduction of the informa-
tion bottleneck and AFS algorithm further increase both the
verification and recognition accuracies, indicating that each
module contributes to overall model performance.

V. CONCLUSION

In this paper, we have proposed a modality-aware Saliency
Search Network (SSN) based on Light CNN to extract domain-
invariant identity features. We enabled the active parts for face
recognition and disabled the inactive regions. The saliency
search process is implemented by our proposed automatic fea-
ture search (AFS), where each pixel is automatically selected
based on its importance for the final identity-related embed-
ding extraction. Moreover, considering that the datasets used
for NIR-VIS HFR are generally small, we further introduced
an information bottleneck network to guide the search process
to avoid the overfitting problem. We conducted extensive
experiments involving both complete and partial NIR-VIS
HFR on four well-known datasets. In-depth analyses have been
made to demonstrate both the superiority of our proposed SSN
over other state-of-the-art methods and the efficiency of every
introduced component.

In the future, we would like to establish a new dataset of
real-world occluded NIR face images, with various masks,
sunglasses, etc. Our framework will then be adapted to be
more suitable for real-world scenarios. Moreover, the frame-
work and strategy can be generalized for NIR-VIS person
re-identification, which is also an interesting and challenging
area.
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