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Inconsistency-Aware Wavelet Dual-Branch Network
for Face Forgery Detection
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Abstract—Current face forgery techniques can generate high-
fidelity fake faces with extremely low labor and time costs. As
a result, face forgery detection becomes an important research
topic to prevent technology abuse. In this paper, we present
an inconsistency-aware wavelet dual-branch network for face
forgery detection. This model is mainly based on two kinds
of forgery clues called inter-image and intra-image inconsis-
tencies. To fully utilize them, we firstly enhance the forgery
features by using additional inputs based on stationary wavelet
decomposition (SWD). Then, considering the different proper-
ties of the two inconsistencies, we design a dual-branch network
that predicts image-level and pixel-level forgery labels respec-
tively. The segmentation branch aims to recognize real and
fake local regions, which is crucial for discovering intra-image
inconsistency. The classification branch learns to discriminate
the real and fake images globally, thus can extract inter-image
inconsistency. Finally, bilinear pooling is employed to fuse the
features from the two branches. We find that the bilinear pool-
ing is a kind of spatial attentive pooling. It effectively utilizes
the rich spatial features learned by the segmentation branch.
Experimental results show that the proposed method surpasses
the state-of-the-art face forgery detection methods.

Index Terms—Face forgery detection, stationary wavelet
decomposition, dual-branch network, bilinear pooling.

I. INTRODUCTION

IMAGE forgery which has been applied for decades for
either good or evil purposes is not a new technology.

Traditional methods involve a large amount of time and labor
costs, and the users need to be skilled in related tools. Many
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early works propose to detect such image manipulations via
blind methods that do not use any data for training. These
methods often exploit artifacts generated from specific image
processing stages such as photography and compressed trans-
mission. Optical distortion [1], texture patterns [2], [3], noise
features [4], [5] and compression artifacts [6], [7] are some of
the most popular clues. Recently, deep learning becomes an
effective framework to deal with this challenge. Some meth-
ods use convolutional neural networks combined with other
features such as noise residuals [8].

However, recent development on deep generative learning
brought technology revolution into image forgery research.
Many powerful methods has been developed [9], [10] and have
been successfully applied in many areas [11], [12], [13], [14],
[15], [16], [17]. With the help of tools based on these meth-
ods, a non-expert is able to forge images and videos better than
previous experts in even several seconds. The tools focusing
on human faces are especially popular since they have various
potential applications. In this situation, technology abuse may
cause severely bad influences especially in the online social
medias that spread fake information very fast. Therefore, it
is very important and urgent to develop effective face forgery
detection methods against current face forgery algorithms.

To promote the face forgery detection research, many
datasets [18], [19], [20] were proposed recently. These datasets
are based on popular algorithms such as DeepFakes [21] and
FaceSwap [22]. The imperfect algorithms leave artifacts for us
to identify the forged images. We find that the manipulations
are always applied in local image regions in these methods.
For example, DeepFakes only exchanges and adjust rectangu-
lar regions covering the facial features. As a result, the artifacts
can be categorized into two aspects. The first is the inter-image
inconsistency. It reflects the general differences between real
and forged images. The second is the intra-image inconsis-
tency that describes the differences between the forged regions
and unforged regions inside one image. We use an example
to show the two clues in Figure 1. It can be seen that in the
left fake image, the skin colors are different in the two small
regions, while the corresponding real image shows a uniform
skin appearances. The right two are the second level decom-
posed images with stationary wavelet decomposition. we can
see that there are abnormal high-frequency responses in the
fake images, while the corresponding region in the real image
is smooth. These phenomenons indicate the importance of the
two inconsistency features. However, how to effectively utilize
them has not been revealed comprehensively. Attention-based
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Fig. 1. Two kinds of face forgery clues. The left two are the images in the
original RGB color space. We can see that the skin colors in the red and blue
rectangles are very different. The right two images are the level-2 stationary
wavelet decomposition results. They are column high-pass filtered images.
Note that the edge artifacts are captured in the green rectangles.

methods concentrate on the forged regions [23], [24] but may
ignore some inter-region relations. To take advantage of the
two inconsistency clues, we propose to split the problem into
two subtasks, the forgery clue enhancement and extraction,
and two methods are designed to achieve them.

We achieve the first task that aims to enhance the
forgery clues by investigating frequency domain features.
Some previous works pointed out that the forgery clues
are more significant in some image frequency sub-band
signals [25], [26], [27], such as the high-frequency responses
shown in the right two images in Figure 1. Traditional trans-
formations like Fourier Transform (FT) and Discrete Cosine
Transform (DCT) represent image frequency spectrum glob-
ally regardless of the local frequency information. However,
spatial information is important especially in detecting the
intra-image inconsistency. Although we can extract spatial fea-
tures directly from the RGB space, it is hard to bridge the
information from the two domains. To this end, we propose to
use Stationary Wavelet Decomposition (SWD) to learn space-
frequency features. As show in Figure 3, the decomposed
images cover different frequency subbands with different spa-
tial resolutions. Furthermore, wavelet based decomposition
also extracts multi-direction information. In our model, we use
the SWD instead of the traditional Discrete Wavelet Transform
(DWT) so that the translation-invariance is maintained. The
resolutions of different level wavelet coefficients in the SWD
are kept the same as the original images. Therefore, we simply
use the coefficients as additional inputs. They are processed
by several convolutional layers and finally fused with the RGB
image features.

The second task is to effectively extract the two incon-
sistency features. The inter-image inconsistency comes from
the general patterns of each class (real and fake). We use
a simple global binary classification task to learn such fea-
tures. However, to capture the intra-image inconsistency, the
model needs to maintain high-resolution features and extract
the pixel-level forgery information. To this end, we propose
to employ a dual-branch architecture that predicts both image-
level forgery labels (classification) and pixel-level forgery
labels (segmentation). The classification branch focuses on
the inter-image inconsistency and the segmentation branch
provides the forgery location information to help extract-
ing intra-image inconsistency. We further employ bilinear

pooling to fuse and pool the features from the two branches
and finally predict the image-level forgery label. Different
from direct feature concatenation or summation, we find that
the bilinear pooling is a kind of spatial attentive pooling
method. Therefore, it effectively utilize the spatial forgery
information learned from the segmentation branch to facilitate
the intra-image inconsistency extraction. We conduct suffi-
cient experiments to validate the effectiveness of our proposed
methods.

Our contributions in this paper are summarized as follows:
• There are two major features to detect forged faces

including the inter-image inconsistency and intra-image
inconsistency. We propose to fully utilize them through
two tasks that aim to enhance and extract inconsistency
features respectively.

• To enhance the inconsistency features, we employ the sta-
tionary wavelet decomposed images as additional inputs.
The SWD keeps the resolution unchanged and maintain
the translation-invariance. It is able to extract localized
frequency information comprehensively.

• To extract the inconsistency features, we propose a
dual-branch multi-task network to handle the differences
between the two features. The two branches learn image-
level and pixel-level forgery labels respectively, thus
concentrate on different inconsistency features.

• Bilinear pooling is employed to fuse features from the
two branches. We find that the bilinear pooling can be
regarded as spatial attentive pooling, which takes advan-
tage of the spatial forgery information effectively. With
the help of different inconsistency features, the forgery
detection performances are finally boosted.

II. RELATED WORK

We briefly review some of the previous works related to our
approach in this section.

A. Face Manipulations Detection

By far, the human face is the main biological feature of a
person, such as a universal ID card. As a result, there has been
a great deal of panic with the advance of artificial intelligence
tools that produce realistic facial images that do not exist or
modify face attributes in videos in a credible way. DeepFakes
is a recent image-forgery technology [21]. Therefore, several
orthogonal works have been proposed newly to distinguish
between real and manipulated faces [28]. Methods for face
forgery detection can be roughly divided into two categories,
i.e., discriminative classifiers based methods and data-driven
approaches.

The former category usually utilizes diverse semantic dis-
crepancies between the head and the face. Agarwal et al. [29]
proposed a forensic technique to model facial movements and
expression that represent a personal speaking pattern. They
build a novel detection model based on the one-class support
vector machine (SVM) [30], which can distinguish between
real images and manipulated ones. Li et al. [31] trained a deep
convolutional neural network (DCNN) to find fake face videos
based on detection of eye blinking in videos. The authors
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Fig. 2. The pipeline of our proposed method. The face image is fed into the dual-branch networks and each branch has two input routines. One is the
normal RGB input, the other decomposes the image into different space-frequency components based on stationary wavelet decomposition. The features of
the two input routines are summed up and transmitted to the multi-resolution module, in which the features of different resolutions are extracted (note that
Figure is only used to show the structure, it is not the exact number of layers). The output features of different resolutions are processed at each branch to
predict pixel-level and image-level forgery labels respectively. The processed features from the two branches are fused with the bilinear pooling to obtain the
final image-level label.

believed that this was a physiological signal that didn’t show
up very well in the synthetic fake video. Later, Li and Lyu [32]
observed that there were significant artifacts in DeepFakes
videos due to the limited resolution of the generated image
used in the warping process. Thus, they directly simulated
such artifacts using simple image processing operations and
made their method more robust. Matern et al. [33] thought
that most of computer vision works have limitations when
applied to specific, pre-defined scenarios because they would
lead to dramatic artifacts in the generated content. Therefore,
the authors adopted hand-made visual features to detect image
manipulations.

As for data-driven approaches, Rössler et al. [18] demon-
strated that the XceptionNet-based classifier [34] was superior
to all other variants in detecting fakes. Traditional image
forensics techniques are often not suitable for video because
compression seriously degrades the quality of the data. Thus,
Afchar et al. [35] presented two networks with few layers
to capture the mesoscopic properties of images. Similarly,
Zhou et al. [36] proposed a two-stream network to detect
face tampering. Particularly, GoogLeNet was trained to detect
manipulated artifacts in the face classification stream while
a patch based triplet network was trained to capture local
noise residuals and camera characteristics. Masi et al. [28] also
proposed a dual-branch structure, namely one branch propa-
gating the original information and the other one amplifying
multi-band frequencies. Later, Nguyen el al. [37] utilized the
multi-task learning strategy to locate and detect manipulated
regions simultaneously. Islam et al. [38] proposed a dual-order
attention model for capturing copy-move location information
and exploiting more discriminative features, respectively.

B. Wavelet Transform

In order to perform component analysis on data at multiple
scales, wavelet transforms were proposed, which separates
data into different space-frequency components. It has been
widely used in various computer vision tasks [39]. Nowadays,
for different tasks, researchers have proposed various works
to combine wavelets with CNNs or other technologies, such
as image denoising [40], image super-resolution [15], image
style transfer [41] and so on. Deng et al. [42] proposed
an approach based on wavelet domain style transfer, which
achieve perception-distortion trade-off compared with the
GAN methods better. Yoo et al. [41] proposed a wavelet cor-
rection transfer based on whitening and coloring transforms, so
that their structural information and statistical characteristics
of VGG feature space can be maintained during the styliza-
tion process. Besides, Liu et al. [40] presented a multi-level
wavelet CNN that wavelet transforms are used to reduce the
sizes of feature maps. Wavelet transforms also have been used
in the image copy-move detection research [43], [44]. The typ-
ical framework is to compute the similarities between different
local regions in the wavelet domain, and match the regions
based on the similarities.

C. Image Semantic Segmentation

Image semantic segmentation, a dense image prediction
task, plays an important role in high-level scene understand-
ing. Most of the methods are proposed to extract features of
the required spatial resolution and retain the object details.
Noh et al [45] proposed a novel segmentation approach by
utilizing deconvolution to learn powerful representation from
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Fig. 3. The SWD with different frequency and space resolutions. In the
process, on the one hand, each decomposition output channel only covers
half of the input frequency spectrum, indicating a larger frequency resolution.
On the other hand, the spatial size of the filter kernel is 2 times larger than
the last decomposition level, resulting in a larger space coverage.

low-resolution feature maps. Badrinarayanan et al. [46]
presented a practical deep fully convolutional neural network
consisting of an encoder network, a decoder network followed
by a pixel-wise classification layer. Lin et al. [47] found that
repeated subsampling operations would lead to a dramatic
performance decrease. Thus, the author proposed RefineNet,
a generic multi-path refinement network, to exploit all the
information available explicitly. Meanwhile, other methods
focus on aggregating multi-scale contextual information.
Liu et al. [48] presented a method, named as ParseNet, to add
global context to fully convolutional networks by introducing
image-level features.

III. METHOD

In this section, we firstly present the frequency-aware fea-
ture extraction based on the stationary wavelet decomposition
in Section III-A. Then the dual-branch multi-task learning
networks as well as the bilinear pooling strategy to fuse
the features are introduced in detail in Section III-B. Finally
we introduce other model details including some network
architectures and learning processes in Section III-C.

A. Wavelet Based Frequency-Aware Feature Extraction

Many works have analyzed that frequency domain fea-
tures are helpful to exploit the forgery clues [25]. To
extract frequency-aware features, some works use DCT trans-
forms [49]. However, these methods cannot capture the
features of different space-frequency resolutions compre-
hensively. Therefore, we cannot obtain sufficient localized
frequency information. To this end, we propose to integrate
wavelet-based features in our model.

To be specific, we use stationary 2-D discrete wavelet trans-
form to decompose the input images into different frequency
sub-bands. Given the pre-defined wavelet basis, we construct
the corresponding 2-D wavelet filters Fd = {f d

LL, f d
LH, f d

HL, f d
HH}

at the decomposition level d. Take the second filter as an exam-
ple, the subscript LH means that the filter is a row low-pass
and column high-pass filter. Different from classical wavelet
transform, the stationary wavelet decomposition upsamples the
filters instead of downsampling the filtered images when the

Fig. 4. The SWD can be regarded as applying convolutions with filters of
different dilations.

decomposition level d > 1, thus the resolution of the decom-
posed images are kept unchanged. It has two advantages. First,
it is convenient to integrate the multi-level SWD outputs into
CNNs. Second, the translation-invariance property is main-
tained. The SWD can be regarded as the dilated convolution
with kernel Fd, and the dilation equals to the decomposition
level d. Figure 4 gives an example of the filter fHH at different
levels. Given an image I ∈ R

3×H×W , the first level decomposi-
tion generates four subband images I1 = {I1

LL, I1
LH, I1

HL, I1
HH},

and the level d outputs Id are the decomposition results of the
Id−1
LL . This process is applied to each image channel indepen-

dently. After each decomposition, the frequency range will be
reduced to half of the last level, while the spatial range of
each frequency component becomes 2 times larger. Therefore,
different decomposition levels reflect the combination of dif-
ferent space-frequency resolutions. This process is visualized
in Figure 3.

Once the wavelet decomposed images are obtained, we use
convolutional layers to extract frequency-aware features. The
two input branches turn the different inputs into features of
the same shape. Instead of directly summing up the two fea-
tures, we employ a channel attention fusion strategy, which
calculates the channel attention weights of each branch fea-
tures. The fused feature is the weighted summation based on
the normalized attention weights.

B. Dual-Branch Network With Bilinear Pooling

The two kinds of forgery clues, i.e., the inter-image incon-
sistency and the intra-image inconsistency, are all helpful in
our tasks. However, learning the two clues are significantly
different tasks. Intra-image inconsistency needs to capture the
different pixel-level patterns, while inter-image inconsistency
requires to learn the different responses between real and fake
images globally.

Considering the different characters of the two forgery clues,
we employ a dual-branch model to learn them respectively as
shown in Figure 2. The backbones of the two branches are
of the same architecture, but the parameters are not shared.
We use the segmentation task to learn the pixel-level forgery
labels in the first branch. This branch provides detailed spa-
tial features, which is important to capture the inter-region
relations. The second branch directly learns binary classi-
fication task to distinguish fake images from real images.
Through this architecture, we obtain a high-resolution feature
fs ∈ R

C1×H1×W1 from the segmentation branch and a wide fea-
ture fc ∈ R

C2×H2×W2 from the classification branch. Obviously,
we have C1 < C2, H1 > H2 and W1 > W2, indicating more
spatial information in fs and more semantic information in fc.
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Fig. 5. Bilinear pooling process. The features from the two branches are
firstly resized to the same spatial size by interpolation and convolution. Then
the spatial dimension is flattened. finally the bilinear pooled feature is obtained
by the inner product of the two flattened features.

The next question is that how we use the features from the
two branches effectively. If there is no need of spatial knowl-
edge, the direct way may be combining global average pooling
with feature summation or concatenation. However, the spa-
tial information, especially the local forgery information from
the segmentation branch, should not be neglected, otherwise
the intra-image inconsistency cannot be effectively utilized.
Therefore, we achieve the feature fusion based on bilinear
pooling [50].

To conduct the bilinear pooling, the features from the
two branches need to be spatially aligned. Therefore, we
interpolate the classification features fc to f ′

c and pool the seg-
mentation features fs to f ′

s . f ′
c and f ′

s are of the same spatial
size H×W. We reshape both of the features instead of directly
interpolating fc to reduce the computation burden. The pooling
steps are as follows. Firstly, we calculate the outer product of
each location feature f ′

s(i) ∈ R
C1×1 and f ′

c(i) ∈ R
C2×1. Then,

the global representations are obtained by summing up the
results at all positions. The first two steps is written as:

fbp =
HW∑

i=1

f ′
s(i) × f ′

c(i)
�. (1)

We achieve the two steps in our case by using the dot
product between the spatially flattened features, which is
formulated as

fbp = T
(
f ′
s

) · T
(
f ′
c

)� (2)

where T() is the flatten function that turn the features from
the shape R

C×H×W to the shape R
C×HW . This process is

visualized in Figure 5.
Finally, the bilinear pooling outputs are obtained by vector-

izing and normalizing the fused outputs fbp

fbp = T
(
fbp

)
(3)

fbp = sign
(
fbp

)√∣∣fbp
∣∣ (4)

fbp = fbp∥∥fbp
∥∥

2

. (5)

To understand why the bilinear pooling can utilize the spa-
tial forgery information, we illustrate its process from another
perspective. The bilinear pooling is a kind of attentive pooling

Fig. 6. Another perspective of the bilinear pooling. Suppose there is a two-
channel segmentation feature f ′

s and a three-channel classification feature f ′
c.

Each channel of f ′
s is multiplied with each channel of f ′

c using the Hadamard
product. Global average pooling (GAP) is applied to the output. Therefore, it
can be regarded as a guided attentive pooling method.

that uses multiple spatial attention maps to process the input
features. In our model, we regard the segmentation features f ′

s
as the attention maps and the classification features f ′

c as the
input features. Unlike using a single forgery mask as the atten-
tion map [23], our method introduces richer spatial information
to avoid only focusing on the forged regions. Different dimen-
sions of the pooling outputs reflect different combinations of
the spatial and semantic responses. As a result, both the intra-
image and inter-image inconsistency features are effectively
utilized. This perspective is visualized in Figure 6. It is shown
clearly that this is a combination of global average pooling
and spatial attention.

C. Network Architecture and Model Training

The backbone of our dual-branch model is the High-
Resolution Network (HRNet) [51]. We choose this backbone
because it learns high-level semantic features and high-
resolution spatial features simultaneously. At each network
block, the HRNet learns features of different resolutions.
Between adjacent blocks, features of different resolutions are
summed up to exchange information. We use it to achieve both
the classification and the segmentation tasks. In our model, we
use the same stem module and high-resolution module as the
original HRNet. For the wavelet input branch, we only adjust
the number of channels accordingly. We use 3-level wavelet
decomposition with Haar wavelet by default. After the features
of different resolutions are obtained from the high-resolution
modules. We use the network heads for classification and
segmentation tasks similar to the original HRNet. As shown
in Figure 7, in the segmentation head, the feature maps of
different resolutions are interpolated to the same size and con-
catenated. In the classification head, the feature channels of
different resolutions are increased firstly. Then high-resolution
features are gradually fused with low-resolution features by
convolutions with stride = 2. Finally the features of the small-
est resolution are globally pooled to predict binary labels. We
use the last features before the classification and segmentation
layers to perform bilinear pooling.

To learn the pixel-level and image-level labels, we simply
use the popular binary cross-entropy loss for classification and
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Fig. 7. The network heads for the two branches.The left is the classification
head and the right is the segmentation head. The left three features in each
head are the outputs of the high-resolution modules.

segmentation learning. The loss function is formulated as

L = Lbranch2
cls + α1Lbilinear

cls + α2Lbranch1
seg (6)

where α1 and α2 are the trade-off between different loss
functions. We simply set them to 1 in our experiments.

IV. EXPERIMENTS

A. Experimental Settings

1) Dataset: FaceForensics++ [18]. It is a challenging
dataset with 1,000 source videos. The number of training
videos, test videos and validation videos are 720, 140 and 140
respectively. The videos are collected from YouTube and most
of them are the newscast. Each video contains 300-700 frames.
There are four kinds of forgery methods manipulating the
videos including DeepFakes (DF) [21], FaceSwap (FS) [22],
Face2Face (F2F) [55] and NeuralTextures (NT) [56]. The
dataset also provides videos of different qualities that are com-
pressed by H.264 algorithm. Following the standard pipeline,
we sample 270 frames from each training video and 100
frames from each validating and testing video. When we train
the model on all forge types, we only use 100 frames in fake
videos to ease the class imbalance problem.

Celeb-DF [20]. It is a high-quality DeepFakes video dataset
with 590 real videos and 5, 639 DeepFake videos. The average
length of all videos is approximate 13 seconds and the frame
rate is 30. 100 frames are randomly sampled in each video
for this dataset. Following the standard protocol, we use the
designated 518 videos for testing. In the remaining videos,
10% are randomly selected as the validation set.

UADFV [57]. It is a small-scale DeepFakes video dataset
containing 49 real videos and 49 fake videos. The average
length of these videos is approximately 11.14 seconds. As
previous works, we use 35 real and 35 fake videos to train the
model, and the remaining videos are left for testing.

2) Evaluation Metrics: Same as the previous works, the
classification accuracy (Acc) and the area under the receiver
operating characteristic curve (AUC) are used to evaluate mod-
els. In the real-world scenarios, we may care about that if we
can detect all the fake images in the given data. Therefore,
True Positive Rate (TPR) at low False Positive Rate (FPR)
is also used. We report the TPR at FPR=0.1. As for the seg-
mentation task, we report the mean Intersection-over-Union

Fig. 8. The ground-truth pixel-level labels of an image and its different forg-
eries. They are generated through the sliding window SSIM between aligned
real and fake faces.

(mIoU) results. All the results are the frame-level detection
results.

3) Data Pre-Processing: To process the videos and conduct
frame-level experiments, we use MTCNN [58] to detect and
extract faces from each frame. To avoid incorrectly detected
face regions, we use a high threshold 0.99 to filter the detec-
tion results. The face region is enlarged by a factor of 1.3
around the center of the detected face. Note that we only detect
faces in the real videos, and the detected coordinates can also
be used to crop faces in the corresponding fake videos since
the face locations and head poses are kept unchanged. But
sometimes the video frame resolution may be changed by the
forgery algorithms, such as some videos manipulated by the
NeuralTextures in the FF++ dataset. Their frame widths are
slightly smaller than the corresponding real videos. In this sit-
uation, we modify the coordinates to align the face bounding
boxes. Based on the paired real and fake face images, we
compute the ground-truth pixel-level labels to supervise the
segmentation branch. Specifically, we use the structural simi-
larity (SSIM) between paired real and fake images. The SSIM
is calculated in a sliding window of size 5 × 5. The gener-
ated SSIM maps are binarized with the threshold 5. Finally
we remove the small holes in the maps by the morphology
method to increase the smoothness. Figure 8 gives the exam-
ples of one cropped face image, the 4 different forged images,
and the corresponding pixel-level labels.

There may be some cases in the fake videos that more than
one faces exist in some frames and our cropped faces are not
the manipulated faces. To avoid the negative influences of such
cases, we use the calculated pixel-level labels to correct the
image-level labels. Specifically, if the number of value 1 pixel
(fake pixel) is smaller than 8, we will regard this face image
as a real image. Note that this process aims to deal with the
incorrect chosen of multiple faces, not to filter hard samples. In
fact, it is shown from Figure 8 that a large portion of pixels
are manipulated in true fake images. The number of forged
pixels is far beyond the threshold 8.

To train the models with the extracted face images, we resize
their long edges to 224 and pad the images to 224×224. Data
augmentations are used to improve the generalization ability.
Pixel-level augmentations include random noise, blur, bright-
ness, contrast and saturation, and spatial-level augmentations
are random cropping, flipping and rotation.
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TABLE I
PERFORMANCES OF DIFFERENT VIDEO COMPRESSION LEVELS

4) Training Details: The HRNet is pre-trained on the
ImageNet to accelerate the convergence and improve the gen-
eralization ability. The new layers are randomly initialized.
We use stochastic gradient descent with initial learning rate
0.01 and momentum 0.9 to train our models. The learning
rate is divided by 10 at epoch 10, 13, 15. When the learning
rate is changed, we load the previous models with the highest
Acc performance in the validation set. The batch size is 128.
We use the cross-gpu synchronized batch normalization. The
weights of different losses are set to 1.

B. Comparison With Previous Methods

We firstly test our models on different video qualities. In
the real-world situation, the videos spread in the social medias
are always compressed by popular algorithms such as H.264.
Therefore, it is important to test models in different compres-
sion levels. The FF++ dataset provides two-level compressed
videos (c40 and c23) as well as raw videos. We train our
models respectively in each compression level. Table I gives
the comparison results with previous methods. We use the
directly reported results in the corresponding papers. The
Xception (full) method is the Xception trained without crop-
ping the face regions. Our results are based on the backbone
networks HRNet-18. All the results are the averaged frame-
level performances. We can see from Table that our approach
outperforms previous methods in all the evaluation metrics.
The performance improvement is significant, especially in
the c40 compressed videos. The TPR10% is improved from
previous best 62.48 to 79.03. It is a remarkable improve-
ment, indicating that our model works much better when we
require low false positive rate. Note that the classification on
the raw video quality is a very simple task that most meth-
ods have reached nearly saturated performances. Therefore,
the improvement of our model in this situation is limited.

Then we give the results on different forgery types including
DF, FS, F2F and NT respectively. The model is trained on
all forgery methods at once and evaluated on specific forgery
method. As shown in Table II. Our methods achieve better
performances in all the four forgery types.

The high performances of our model mainly benefit from
the effective enhancement and extraction of different forgery
clues. The wavelet-based frequency-aware features enhance

TABLE II
ACC (%) PERFORMANCES OF DIFFERENT FORGERY METHODS IN C40

COMPRESSION

the forgery feature representations in the frequency domain.
The dual-branch multi-task learning with bilinear fusion effec-
tively captures and fuses the inter-image and intra-image
forgery clues.

C. Ablation Study

In this section, we conduct experiments on different vari-
ants of our model to prove the effectiveness of the proposed
method. The baseline model in our ablation study is the
simple one-branch HRNet-18 that predicts the image-level
forgery labels without the wavelet-based frequency-aware fea-
tures. We use AUC and Acc metrics on the c40 compressed
videos to show the performances. Besides the experiments on
HRNet-18, we add an extra experiment that uses the backbone
HRNet-32 to eliminate the effect of the number of parame-
ters. In other words, one-branch HRNet-32 and dual-branch
HRNet-18 have a similar number of parameters. We also con-
duct an experiment that uses the dual-branch architecture but
the features are fused through direct summation (features from
the two branches are firstly turned in the same width through
1 × 1 convolution and then globally pooled).

As listed in Table III, the proposed wavelet-based
frequency-aware features and the dual-branch network with
bilinear feature fusion effectively improve the forgery detec-
tion performances. Two important points are observed from
Table III. One is that the dual-branch HRNet-18 architec-
tures work better than the single-branch HRNet-32 model.
This indicates that the superiority of our model is not only
from the increased number of parameters, but also the effec-
tive combination of different forgery clues. The other is that
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Fig. 9. Some examples of the pixel-level prediction results. They come from the test set of FF++. The model is trained in the c40 compressed level with all
four kinds of manipulations. The first row to the fourth row shows the original images, the forged images, the ground-truth pixel-level labels and the predicted
soft pixel-level labels respectively.

TABLE III
ABLATION STUDY

in the dual-branch models, the bilinear pooling gives higher
performances than the direct summation. We think that the
direct summation of the two features neglects the spatial
relations of the two features, while the bilinear pooling per-
forms attentive pooling that effectively integrates the learned
spatial information from the segmentation branch into the
classification branch features.

For the wavelet based frequency-aware features, we further
conduct experiments of different wavelet basis including Haar
and Reverse Biorthogonal wavelets. The results in c40 com-
pressed videos are reported in Table IV. We can see that the
different wavelets only cause small performance changes.

D. Pixel-Level Forgery Detection

In our model, the segmentation branch predicts the pixel-
level labels. Therefore, we report the segmentation perfor-
mances qualitatively and quantitatively.

TABLE IV
ACC (%) PERFORMANCES OF DIFFERENT WAVELET BASIS

Fig. 10. The Acc performances of pixel-to-image level classification. We
use different ratios of the number of forged pixels as the threshold to give the
binary results.

Figure 9 gives the segmentation results on eight randomly
selected images. It shows that different forgery types have sig-
nificantly different forgery regions. The DF algorithm changes
the pixel values in a nearly rectangular region that covers
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TABLE V
IOU PERFORMACNES (%) OF PIXEL-LEVEL LABEL PREDICTION

the facial features. Therefore, sometimes we can see a clear
inconsistency between the forehead and the gills, as shown
in Figure 1. The F2F and FS forgery methods manipulate the
entire face region, but sometimes the mouth and the eyes are
kept unchanged. As for the NT, it changes nearly all pixels
in the image. From the last row of Figure, we can see that
the model is able to predict the pixel-level labels precisely in
most cases. However, the prediction for the NT type is hard.
The most possible reason is the irregular small regions in the
ground-truth labels.

Table V gives the mean IoU results of different forgery types
and video qualities. We train the models in different video
qualities respectively. All the forgery types are trained at once
but tested separately. The results also show that predicting
pixel-level labels for the NT algorithms is hard. This may
partly explain the reason why the classification performance
improvement on NT in Table II is not significant as the F2F
and FS. On the one hand, the segmentation branch could
not extract pixel-level label information well enough. On the
other hand, the intra-image inconsistency works not well in
identifying NT forged images.

Since the pixel-level label has been obtained, Some people
may consider using the ratio of the number of forged pixels
to get the image-level label. Specifically, we firstly binarize
the pixel-level labels to 0 and 1 with the threshold 0.5. Then
we compute the ratio of the number of pixels labeled as 1.
Finally the ratio is used to classify the images. However, this
approach has a major limitation that the ratio threshold is hard
to define. Because the manipulated region sizes may be sig-
nificantly different in different forged images. As a result, we
report the classification accuracy on different ratio threshold in
Figure 10. The model is trained in c40 quality. As observed in
Figure, the Acc performances are good when the ratio thresh-
old is small. The Acc drops with the threshold decreasing. A
phenomenon is that when the threshold increases larger than
0.2, the performance degradation becomes really fast. This
may tell us that in most of the fake images in the test set, the
ratios of the manipulated pixels are larger than 0.2. we further
test the AUC to comprehensively evaluate such pixel-to-image
level classification. the AUC is only 76.69%, far worse than the
image-level results 92.97% reported in Table I. This indicates
that this classification method is really unstable.

E. Cross-Domain Test

To validate the generalization performances, we give the
cross-domain tests under several situations. In the FF++
dataset, there are four kinds of face forgery methods that are
regarded as four different domains. Therefore, we conduct an
experiment that the model is only trained with F2F forgery

TABLE VI
GENERALIZATION PERFORMANCES OF MODELS TRAINED AND TESTED

ON DIFFERENT FORGERY METHODS

TABLE VII
CROSS DATASET GENERALIZATION PERFORMANCES

data but tested in all four kinds of forgery images. We show
the results in Table VI. The data used in this table are all
raw quality, and we use the average AUC performance on
the whole validation set to select the best model. It can be
seen that our method outperforms the HRNet and Xception
models with a huge gap, indicating better generalization abil-
ity. Compared with the Face-Xray model, which is specially
designed for improving the generalization ability, our method
still obtains better performance on DF.

We also test our models on the UADFV and Celeb-DF
datasets with different training sets. The results are given in
Table VII. Four different training sets are used to train our
model, including FF++ with c23 and c40 qualities, UADFV
and Celeb-DF. For the AUC metric on the UADFV test set,
we can see that our model obtain the best performances in
both in-dataset test (99.9%) and cross-dataset test (99.6%).
Surprisingly, the model only trained in Celeb-DF performs
well in the UADFV test set. One possible reason is that the
domain gap is not significant. As for the Celeb-DF dataset, our
model trained with FF++ (c23) outperforms previous meth-
ods in the cross-dataset condition. These experimental results
demonstrate the superiority of our model’s generalization
ability.
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Fig. 11. The relations between the testing losses and the image resolutions.
The images are ranked in the testing loss descending order and divided into
adjacent groups. For example, the losses in the group 1 are all larger than the
losses in the group 2. The y axis is the average product of the image width
and height (the image area). It is shown that the larger losses tend to come
from smaller images.

F. Failure Cases Analysis

When applying the face forgery detection model to the
real-world condition, it is important to analyze the factors
that may lead to failed predictions. Obviously, we can see
from the results on FF++ dataset that the forgery method and
video quality are the most important factors. The video qual-
ity deterioration significantly improves the detection difficulty.
As listed in Table I, when using the raw videos, nearly all the
methods reach accuracy beyond 0.95. But under the compres-
sion level c40, the accuracy of all the models in Table I is
below 0.90. As for the different forgery methods, Table II
clearly shows the performance differences. It can be seen that
NT is really hard to detect.

Besides these factors that has been discussed in some
previous works, we also notice that the cropped face image
resolution may be related to the detection performance. For
each forgery method, we record the loss of each test image
and sort the images in the loss descending order. Then we
divide the images into 28 consecutive groups according to the
sorted order and each group contains 500 images. Finally we
show the average image area (pixel number) of the first 15
groups in Figure 11. Figure shows the roughly negative cor-
relation between the loss and the image resolution. In other
words, smaller image resolution may tend to get higher loss
in the model. Therefore, face resolution is an important factor
in face forgery detection.

V. CONCLUSION AND FUTURE WORKS

We present a method for face forgery detection based on the
stationary wavelet decomposition and the dual-branch network
with the bilinear feature fusion. We analyze that the face
forgery detection is based on intra-image and inter-image
inconsistency, and propose to use two tasks, feature enhanc-
ing and extraction, to better utilize them. By introducing the
stationary wavelet decompsition, our model extracts features
of different space-frequency resolutions, thus enhances the

inconsistency features. We design a dual-branch multi-task
learning network to learn both pixel-level and image-level
forgery labels. Therefore, the features reflecting the two incon-
sistencies are effectively extracted. Finally, we employ the
bilinear pooling to effectively combine the features from the
two branches to classify the images. Our model gives the
results that outperform previous state-of-the-art methods with
various evaluation metrics. In the future, we will continue our
works and find more effective methods to make use of the
intra-image and inter-image inconsistencies.
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