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a b s t r a c t 

Most modern face completion approaches adopt an autoencoder or its variants to restore missing regions 

in face images. Encoders are often utilized to learn powerful representations that play an important role 

in meeting the challenges of sophisticated learning tasks. Specifically, various kinds of masks are often 

presented in face images in the wild, forming complex patterns, especially in this hard period of COVID- 

19. It’s difficult for encoders to capture such powerful representations under this complex situation. To 

address this challenge, we propose a self-supervised Siamese inference network to improve the general- 

ization and robustness of encoders. It can encode contextual semantics from full-resolution images and 

obtain more discriminative representations. To deal with geometric variations of face images, a dense cor- 

respondence field is integrated into the network. We further propose a multi-scale decoder with a novel 

dual attention fusion module (DAF), which can combine the restored and known regions in an adaptive 

manner. This multi-scale architecture is beneficial for the decoder to utilize discriminative representa- 

tions learned from encoders into images. Extensive experiments clearly demonstrate that the proposed 

approach not only achieves more appealing results compared with state-of-the-art methods but also im- 

proves the performance of masked face recognition dramatically. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Face completion (a.k.a face inpainting or face hole-filling) aims 

t filling missing regions of a face image with plausible contents 

1] . It is more difficult than general image inpainting because there 

re high-level identity information, pose variations, etc in face im- 

ges. Face completion is a fundamental low-level vision task and 

an be applied to many downstream applications, such as photo 

diting and face verification [ 2,3,86 ]. The target of face comple- 

ion is to produce semantically meaningful content and reasonable 

tructure information in missing areas. 

There are many attempts for face completion, but they usually 

reat it as a general image inpainting problem. Traditional image 

npainting methods [3,8,9] (e.g., PatchMatch) assume that the con- 
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ent to be filled comes from the background area. Therefore, they 

radually synthesize plausible stationary contents by copying and 

asting similar patches from known areas. The performances of 

hese methods are satisfying when dealing with background in- 

ainting tasks. But non-repetitive and complicated scenes, such 

s faces and objects, are the Waterloo of these traditional meth- 

ds because of the limited ability to capture high-level seman- 

ics. Recently, deep convolutional neural networks (CNNs) have 

ade great progress in many computer vision tasks [ 13,87,88,95 ]. 

hus, many deep learning-based methods have been proposed. 

enefiting from the powerful ability of representation learning of 

NNs, their performance has been significantly improved. These 

pproaches adopt autoencoder or its variant architectures jointly 

rained with generative adversarial networks (GANs) to hallucinate 

emantically plausible contents in missing regions [ 2,14,15 ]. But 

hese methods still suffer from three problems: 

Firstly, various kinds of masks are often presented in face im- 

ges in the wild, especially in this tough period of COVID-19, which 

reatly increases the difficulty of image inpainting. Previous im- 

ge inpainting approaches usually train an encoder and a decoder 
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ointly with some commonly-used loss functions (e.g., reconstruc- 

ion loss, style loss, etc). But encoders still struggle to learn pow- 

rful representations from images with various kinds of masks. As 

 result, these CNN-based approaches will produce unsatisfactory 

esults with obvious artifacts. A naive solution is to design a very 

eep network to obtain a large model capacity for learning pow- 

rful representations. However, it will increase the computational 

ost heavily and may not help to learn accurate latent representa- 

ions. 

To cope with this limitation, we propose a self-supervised 

iamese inference network with contrastive learning. We assume 

hat two identical images with different masks form a positive 

air while a negative pair consists of two different images. Con- 

rastive learning aims to maximize (minimize) the similarities of 

ositive pairs (negative pairs) in a representation space. As ex- 

lored in [16,17] , contrastive learning can be regarded as training 

n encoder to perform a dictionary look − up task. An encoded 

query” should be matched with its corresponding “key” (token) 

nd different from others. The “keys” (tokens) in the dictionary are 

sually sampled from images, patches, or other data types. In order 

o acquire a large and consistent dictionary, we design a queue dic- 

ionary and a momentum-updated key encoder. As demonstrated 

n MoCo [16] , the proposed self-supervised inference network can 

earn good features from input images. Thus, the robustness and 

he accuracy of the encoder can be improved. 

Secondly, previous methods consider image inpainting as a con- 

itional image generation task. The roles of the encoder and de- 

oder are recognizing high-level semantic information and synthe- 

izing low-level textures [18] , respectively. These approaches, e.g., 

Conv [15] and LBAM [14] , focus more on missing areas and syn- 

hesize realistic alternative contents by a well-designed architec- 

ure or some commonly-used loss functions. However, there are ei- 

her obvious color contrasts or artificial edge responses, especially 

n the boundaries of results produced by these methods since they 

gnore the structural consistency. In fact, the development of biol- 

gy has revealed that the human visual system is more sensitive 

o the topological distinction [19] . Therefore, we focus not only on 

he structural continuity of restored images surrounding holes but 

lso on generating texture-rich images. 

To properly suppress color discrepancy and artifacts in bound- 

ries, we propose a novel dual attention fusion module (DAF) to 

ynthesize pixel-wise smooth contents, which can be inserted into 

utoencoder architectures in a plug-and-play way. The core idea of 

he fusion module is to calculate the similarity between the syn- 

hesized content and the known region. Some methods are pro- 

osed to address this problem, such as DFNet [20] and Perez’s 

ethod [21] . However, these methods lack flexibility in handling 

ifferent information types (e.g., different semantics), hindering 

earning more discriminative representations. Our proposed DAF is 

eveloped to adaptively recalibrate channel-wise features by taking 

nterdependencies between channels into account and force CNNs 

o focus more on unknown regions. DAF will predict an adaptive 

patial attention map to blend restored contents and original im- 

ges naturally. 

Finally, the verification performance heavily relies on the pixel 

evel similarity and feature level similarity according to Zhang 

t al. [22] , which means that the geometric information of the out- 

ut results should be similar to the input. In practice, face appear- 

nce will be influenced by a number of factors such as meshes, 

earing masks [22–24] and so on. Masks can significantly de- 

troy the facial shape and geometric information, greatly increas- 

ng the difficulty of generating visually appealing results. Therefore, 

t inevitably leads to a sharp decline in face verification perfor- 

ance. For example, healthcare workers must wear sanitary masks 

o avoid infection of diseases, and they will fail to pass through the 

ace verification system. 
2 
In this paper, we assume that the geometric information of the 

nput face image should be kept intact. Inspired by recent advances 

n 3D face analysis [25,26] , a dense correspondence field estima- 

ion is integrated into our network since it contains the complete 

eometric information of the input face. For simplicity, instead of 

sing another network to predict the dense correspondence field 

eparately, we make our decoder simultaneously predict the dense 

orrespondence field and feature maps at multi-scales. Thus, we 

ubtly employ a 3D supervision for our network provided by the 

ense correspondence field. Under this 3D geometric supervision, 

ur network can generate inpainting results with reasonable struc- 

ure information. 

Qualitative and quantitative experiments are conducted on mul- 

iple datasets to evaluate our proposed method. The experimen- 

al results demonstrate that our proposed method not only out- 

erforms state-of-the-art methods in generating high-quality in- 

ainting results but also improves the performance of masked face 

ecognition dramatically. 

This paper is an extension of our previous conference publica- 

ion [27] . We extend it in three folds: 1) A dense correspondence 

eld is proposed to be integrated into our network for utilizing 3D 

rior information of human faces. It can help our network to re- 

ain the facial shape and appearance information from the input. 

) We mainly concentrate on face image completion rather than 

ther types of images. We add an extra face dataset, Flickr-Faces- 

Q (FFHQ) [28] , to demonstrate the effectiveness of our method. 3) 

e conduct an identity verification evaluation for face completion. 

t clearly shows the advantage of the proposed method compared 

ith state-of-the-art methods. 

To sum up, the main contributions of this paper are as follows: 

• We propose a Siamese inference network based on contrastive 

learning for face completion. It helps to improve the robustness 

and accuracy of representation learning for complex mask pat- 

terns. 
• We propose a novel dual attention fusion module that can ex- 

plore feature interdependencies in spatial and channel dimen- 

sions and blend features in missing regions and known regions 

naturally. Smooth contents with rich texture information can be 

naturally synthesized. 
• To keep structural information of the input intact, the dense 

correspondence field that binds 2D and 3D surface spaces is es- 

timated in our network, which can preserve the expression and 

pose of the input. 
• Our proposed method achieves smooth inpainting results with 

rich texture and reasonable topological structural information 

on three standard datasets against state-of-the-art methods, 

and also greatly improves the performance of face verification. 

. Related work 

.1. Image inpainting 

Image inpainting aims to generate alternative contents when a 

iven image is partially occluded or corrupt. Early traditional image 

npainting methods are mainly diffusion-based [1] or patch-based 

3] . They often use the information of the pixels (or image patches) 

round the occluded area to fill the missing regions. Bertalmio 

t al. [1] proposed an algorithm to fill missing regions with in- 

ormation surrounding them automatically based on the principle 

hat isophote lines arriving at the boundaries of the regions are 

ompleted inside. Barnes et a. [3] presented a fast nearest neigh- 

or searching algorithm named PatchMatch, to search and paste 

he most similar image patches from the known regions. These 

ethods utilize low-level image features to guide the feature prop- 

gation from known image backgrounds or image datasets to cor- 
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upted regions. Criminisi et al. [29] proposed an efficient algorithm, 

hich combined the advantages of ’texture synthesis’ techniques 

nd ’inpainting’ techniques. Specifically, they designed a best-first 

ethod to find the most similar patches and used them to re- 

over the corrupted regions gradually. These methods work well 

hen holes are small and narrow, or there are plausible match- 

ng patches in uncorrupted regions. However, when suffering from 

omplicated scenes, it is difficult for these approaches to produce 

emantically plausible solutions, due to a lack of semantic under- 

tanding of images. 

Nowadays, deep learning techniques have made great contribu- 

ions to computer vision communities. In order to accurately re- 

over corrupted images, many methods adopt deep convolutional 

eural networks (CNNs) [ 93,96 ], especially generative adversarial 

etworks (GANs) [35] in image inpainting. Pathak et al. [30] for- 

ulates image inpainting as a conditional image generation prob- 

em. Then, they proposed a Context Encoder to recover corrupted 

egions according to surrounding pixels. Iizuka et al. [36] utilized 

wo discriminators to improve the quality of the generated images 

t different scales, facilitating both globally and locally consistent 

mage completion. At the same time, some approaches designed 

 coarse-to-fine framework to solve the sub-problem of image in- 

ainting in different stages [31,37,38] . Nazeri et al. [37] proposed 

o firstly recover the edge map of the corrupted image, then gen- 

rate image textures in the second stage. Ren et al. [38] proposed a 

ethod in which a structure reconstructor was employed to gener- 

te the missing structures of the inputs while a texture generator 

ielded image details. Zhang et al. [39] proposed an iterative in- 

ainting approach that contained a corresponding confidence map 

n results. They used this map as feedback and recovered holes by 

rusting high-confidence pixels. 

As a branch of image inpainting, face completion is different 

rom general image inpainting since its target mainly focuses on 

estoring the topological structure and texture of the face input. 

hang et al. [22] argued that the performance of verification re- 

ied on both the pixel level similarity and the feature level sim- 

larity. Therefore, they proposed a feature-oriented blind face in- 

ainting framework. Cai et al. [40] proposed a method named 

CSR-GAN to perform face completion and face super-resolution 

y multi-task learning where the generator was required to gen- 

rate a high-resolution face image without occlusion from the oc- 

luded low-resolution face image. Zhou et al. [41] argued that pre- 

ious works overlooked the serious impacts of inaccurate attention 

cores. Thus, they integrated the oracle supervision signal into the 

ttention module to produce reasonable attention scores. 

.2. Unsupervised representation learning 

Unsupervised learning has shown great potential to learn pow- 

rful representations of images recently [16,42,43] . Compared with 

upervised learning, unsupervised learning utilizes unlabeled data 

o learn representations, which can go back to as far as the lit- 

rature proposed by Becker and Hinton [44] . Dosovitskiy et al. 

45] proposed to discriminate between a set of surrogate classes 

enerated by applying a number of transformations. Wu et al. 

46] treated instance-level discrimination as a metric learning 

roblem. Then, the discrete memory bank was utilized to store 

he features for each instance. Zhuang et al. [47] maximized a 

ynamic aggregation metric, which can move similar data in- 

tances together in the embedding space and separate dissimilar 

nstances. He et al. [16] proposed a dynamic dictionary consisting 

f a queue encoder and a moving-averaged encoder from a per- 

pective on contrastive learning and they called this method MoCo. 

t the same time, Chen et al. [43] also presented a simple frame- 

ork with contrastive learning for visual representations (SimCLR). 

echnically, they simplified recent contrastive learning-based algo- 
3 
ithms and did not require specific structures and memory banks. 

nsupervised learning strategies are also used in many computer 

ision tasks recently. Mustikovela et al. [48] used self-supervised 

earning for viewpoint estimation by making use of generative 

onsistency and symmetry constraint. Zhan et al. [49] utilized a 

ask completion network to predict occlusion ordering with a 

elf-supervised learning strategy. 

.3. Attention mechanism 

Attention mechanism is a hot topic in computer vision and has 

een widely investigated in many works [ 50,89–91 ]. The wildly- 

sed attention mechanism can be coarsely divided into two cat- 

gories: spatial attention [50] and channel attention [53] for im- 

ge inpainting. Yu et al. [31] argued that convolutional neural net- 

orks lacked the ability to borrow or copy information from dis- 

ant places, which led to blurry textures in generated images. Thus, 

hey proposed a contextual attention module to calculate the spa- 

ial attention scores between pixels in the corrupted region and 

nown region. Hong et al. [20] proposed a fusion block to gener- 

te an adaptive spatial attention map α to combine features in the 

orrupted region and known region. In this paper, we investigate 

oth spatial attention and channel attention mechanism to further 

mprove the performance of face completion. 

.4. 3D Face analysis 

Nowadays, the famous 3DMM [54] is widely used to express 

acial shape and appearance information for face related tasks, 

uch as facial attribute editing, face hallucination, etc [55,56] . Roth 

t al. [57] proposed a photometric stereo-based method for un- 

onstrained 3D face reconstruction, which benefited from a combi- 

ation of landmark constraints and photometric stereo-based nor- 

als. Yin et al. [45] proposed a generative adversarial network 

ombined with 3DMM, termed as FF-GAN, to provide shape and 

ppearance priors without requiring large training data. 2DASL 

58] utilized 2D face images with noisy landmark information in 

he wild to assist 3D face model learning. It has become a popular 

ethod to establish the dense correspondence field between the 

D and 3D space. G ȭ ler et al. [ 12,25,26 ] proposed a UV correspon-

ence field to build pixel-wise correspondence between RGB color 

pace and 3D surface space. These works show that the UV cor- 

espondence field can retain geometric information of the human 

ace. 

. Methodology 

In this section, we first present our self-supervised Siamese in- 

erence network. Subsequently, the details of the dual attention 

usion (DAF) module, the dense correspondence estimation, and 

earning objectives in our method are provided. The overall frame- 

ork of our face completion method is shown in Fig. 1 . 

.1. Self-supervised Siamese inference network 

Our proposed self-supervised Siamese inference network con- 

ists of two identical encoders but not sharing parameters 

16,17,59] , noted as E q and E k , respectively. The proposed inference 

etwork is trained with contrastive learning, which can be viewed 

s training an encoder to perform a dictionary look-up task: a 

query’ encoded by E q should be similar with its corresponding 

key’ (i.e., positive key) represented by another encoder E k and dis- 

imilar to others (i.e., negative keys). Two images with different 

asks are required for the proposed inference network, named as 

 q and x k , respectively. Thus, we can obtain a query representa- 

ion z q = E q (x q ) and a key representation z k = E k (x k ) , respectively.
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Fig. 1. The network architecture of our method. The self-supervised Siamese inference network consists of encoders E q and E k . This inference network encodes the new 

key representations on-the-fly by using the momentum-updated encoder E k . We insert the dual attention fusion module into several decoder layers, forming a multi-scale 

decoder. We allow the decoder to estimate the dense correspondence field and the feature maps that are used for the DAF module at multi-scales simultaneously. The 

inference network is firstly trained with contrastive learning. Then the pre-trained encoder E q and the decoder are jointly trained with the fusion module. 
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ollowing many previous self-supervised works [47,60] , the con- 

rastive loss is utilized as the self-supervised objective function for 

raining the proposed inference network and can be written as: 

 = −log 
exp(z q .z 

+ 
k 
/τ ) 

∑ K 
i =0 exp(z q .z k i /τ ) 

, (1) 

here τ is the temperature hyper-parameter, and the loss function 

ill degrade into the original sof tmax when τ is equal to 1. The 

utput will be less sparse with τ increasing [61] . The τ is set as 

.07 for the efficient training process in this work. Specially, this 

oss, also known as InfoNCE loss [16,17] , tries to classify z q as z + 
k 

.

ere, z q and z + 
k 

are encoded from a positive pair. K means the 

umber of negative samples. 

High-dimensional continuous images can be projected into a 

iscrete dictionary by contrastive learning. There are three general 

echanisms for implementing contrastive learning (i.e., end-to-end 

raining [17] , memory bank [46] and momentum updating [16] ), 

hose main differences are how to maintain keys and how to up- 

ate the key encoder. Considering GPU memory size and powerful 

eature learning, we follow MoCo [16] to design a consistent dictio- 

ary implemented by queue . Thus, the key representations of the 

urrent batch data are enqueued into the dictionary while the old- 

st representations are dequeued progressively. The length of the 

ueue is under control, which enables the dictionary to contain a 

arge number of negative image pairs. Such a dictionary with large- 

cale negative pairs will facilitate representation learning. We set 

he length of the queue as 65536 in this work. 

It is worth noting that the encoder E k is updated by a 

omentum-updated strategy instead of direct back-propagation. 

he main reason is that it’s difficult to propagate the gradients to 

ll keys in the queue. The updating process of E k can be formulated 

s follows: 

k ← mθk + (1 − m ) θq , (2) 

here θq and θk denotes as the parameters of E q and E k , respec- 

ively. θq is updated by back-propagation. m ∈ [0 , 1) is the mo- 

entum coefficient hyper-parameter and set as 0.9 in this paper. 

he momentum-update mechanism makes the encoder E update 
k 

4 
moothly relative to E q , resulting in a more consistent discrete dic- 

ionary. 

.2. Dual attention fusion module 

We now give more details about our proposed dual attention 

usion module (see Fig. 2 ), which contains a channel attention 

echanism and a spatial attention mechanism. This fusion mod- 

le is embedded into the last several layers of the decoder and 

utputs face completion results with multi-scale resolutions [ 62 ]. 

hus, constraints can be imposed on multi-scale outputs for high- 

uality results. 

Previous CNN-based image inpainting approaches treat channel- 

ise features equally, thus hindering the ability of the represen- 

ation learning of the network. Meanwhile, high-level and inter- 

elated channel features can be considered as specific class re- 

ponses. For more discriminative representations, we first build a 

hannel attention module in our proposed fusion module. 

As shown in Fig. 2 , let a feature map F = [ f 1 , · · · , f c , · · · , f C ] be

ne of the inputs of the fusion module, whose channel index is 

and size is h × w . The channel descriptor can be acquired from 

he channel-wise global spatial information by global averaging 

ooling. Then we can obtain the channel-wise statistics z c ∈ R 

c by 

hrinking F : 

 c = H GP ( f c ) = 

1 

h × w 

h ∑ 

i =1 

w ∑ 

j=1 

f c (i, j) , (3) 

here z c is the cth element of z. f c (i, j) is the value at position

i, j) of cth feature f c . H GP means the global pooling function. 

In order to fully explore the channel-wise dependencies of the 

ggregated information, we introduce a gating mechanism. As il- 

ustrated in [53,64] , the sigmoid function can be used as a gating 

unction: 

 = σ (W U δ(W D z)) , (4) 

here σ (·) and δ(·) are the sigmoid gating and ReLU functions, 

espectively. W and W are the weight sets of Con v layers who 
D U 
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Fig. 2. The architecture of the dual attention fusion module. It firstly predicts an adaptive spatial attention map α with the learnable transformation function A . Then we 

can obtain final natural face completion results with rich texture by the fusion function B. 
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et channel number as C/r and C, respectively. Finally, the channel 

tatistics ω are acquired and used to rescale the input f c : 

ˆ f c = w c · f c , (5) 

here w c and f c are the scaling factor and feature map of the cth

hannel, respectively. 

The long-range contextual information is essential for discrimi- 

ant feature representations. We propose a spatial attention mod- 

le that forms the final part of the proposed fusion module. Given 

n input image with a mask x q , we first get x q 
′ 

that matches the

ize of the re-scaled feature map 

ˆ F ∈ R 

c×h ×w , 

 q 
′ = (W C x q ) ↓ , (6) 

here W C and ↓ are the weight set of a 1 × 1 convolutional layer

nd downsample module, respectively. 

Then the adaptive spatial attention map α ∈ R 

C×h ×w is given by, 

= σ (A ( W K ̂
 F , x q 

′ 
)) , (7) 

here W K is the weight set of a 1 × 1 convolutional layer. It sets 

hannel number of ˆ F to be same with x q 
′ 
. A is a learnable transfor-

ation function implemented by three 3 × 3 convolutional layers. 

 K ̂
 F and x q 

′ 
are first concatenated and then fed into the convo- 

utional layers. f (·) is the sigmoid function that can make α an 

ttention map to some extent. 

The final inpainting result ˆ Y is obtained by, 

ˆ 
 = B(α, W K ̂

 F , x q 
′ 
) = α � W K ̂

 F + (1 − α) � x q 
′ 
, (8) 

here � and B denote the Hadamard product and fusion function, 

espectively. The adaptive spatial attention map α can adjust the 

alance between the ground truth image and the restored image 

o obtain a smoother transition. We can eliminate obvious color 

ontrasts and artifacts especially in boundary areas, and get natural 

ace completion results with richer textures. 

.3. Dense correspondence field estimation 

Masks can dramatically destroy the facial shape and structure 

nformation, such as viewing angles, facial expressions, and so on, 

aking it quite tough to achieve visually appealing results. To keep 

he geometric information of the human face intact during the face 

ompletion process, we introduce a dense correspondence field 

hat binds the 2D and 3D surface spaces into our network. 

The structure and texture information of the face image can 

e disentangled by the dense correspondence field according to 

25,26] . The geometrical information is stored in the correspon- 

ence field while the texture map can represent the surface of a 

D face to some extent. In this paper, we mainly concentrate on 

nferring the dense correspondence field by our network. Techni- 

ally, given an input image x ∈ R 

c×h ×w , the dense correspondence 

eld C = (u ; v ) consists of maps in the UV space ( u, v ∈ R 

h ×w ). The
5 
isual illustration is shown in Fig. 3 in which the minimum is ren- 

ered as blue and the maximum is rendered as yellow. 

We allow our decoder to predict the dense correspondence 

elds and feature maps at multi-scales simultaneously, where the 

eature maps are fed into the proposed dual attention fusion mod- 

le (please see Section 3.2 ). Thanks to the multi-scale network ar- 

hitecture, our decoder can obtain context information better and 

aintain geometrical information. In order to supervise C during 

raining, we minimize the pixel-wise error between the estimated 

esult and the ground truth C. It can be written mathematically as, 

 UV = || C ′ − C|| 2 , (9) 

here C 
′ 

means the predicted dense correspondence field result 

f an input image. We employ BFM [65] , a 3D shape estimation 

pproach, to obtain the ground truth dense correspondence field C

imilar with [ 12,55 ]. We then obtain coordinates of vertices by per- 

orming the model fitting method [66] . Finally, those vertices are 

apped to the UV space by the cylindrical unwrapping according 

o Booth and Zafeiriou [67] . 

.4. Loss functions 

Following [ 92–94 ], for synthesizing richer texture details and 

orrect semantics, the element-wise reconstruction loss, the per- 

eptual loss [68] , the style loss and the adversarial loss are used in

ur proposed method. Moreover, we also employ the identity pre- 

erving loss function to ensure that the identity information of the 

enerated images remains unchanged. 

Reconstruction Loss. It is calculated as L 1 -norm between the 

npainting result ˆ Y and the target image Y , 

 rec = || Y − ˆ Y || 1 . (10) 

Style Loss. For getting richer textures, we also adopt the style 

oss defined on the feature maps produced by the pre-trained 

GG-16. Following [ 14,15 ], the style loss can be calculated as the 

 1 -norm between the Gram matrices of the feature maps, 

 style = 

1 

N 

N ∑ 

i =1 

1 

C i · C i 
|| �i (Y )(�i (Y )) T − �i ( ̂  Y )(�i ( ̂  Y )) T || 1 , (11) 

here C i denotes the channel number of the feature map at i th 

ayer in the pre-trained VGG-16. 

Identity Preserving Loss. To ensure the generated face images 

elong to the same identity as the target face images, we adopt 

ightCNN [5] to extract the features, then use the mean square er- 

or to constrain the embedding spaces, 

 ip = || 	(Y ) − 	( ̂  Y ) || 2 , (12) 

here 	 means the pre-trained LightCNN network [5] . 
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Fig. 3. Visualization examples of the dense correspondence. The face image is shown in the middle. The corresponding U map and V map are shown in the left and right, 

respectively. 
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Model Objective. The above loss functions can be grouped into 

wo categories: St ruct ure Loss and T exture Loss , respectively. The 

t ruct ure Loss is given by, 

 

k 
struct = λrec L 

k 
rec + λu v L 

k 
u v , (13) 

here λrec and λu v mean the weight factors and are set as 6 and 

.1 empirically. L 

k 
struct is calculated as the sum of L rec and L u v at 

he k th layer of the decoder. Here, L u v means the UV loss function

please see Section 3.3 ). 

The T exture Loss is given by, 

 

k 
text = λstyle L 

k 
style + λip L 

k 
ip , (14) 

here λstyle and λip are trade-off factors and are set as 240 and 

.1 empirically in this work. 

Finally, the total model objective can be formulated as, 

 total = 

1 

| P | 
∑ 

k ∈ P 
L 

k 
struct + 

1 

| Q| 
∑ 

k ∈ Q 
L 

k 
text , (15) 

here both P and Q are the selected decoder layer sets that im- 

osed constraints. We select P as { 1 , 2 , 3 , 4 , 5 , 6 } and Q as { 1 , 2 , 3 }
espectively for better inpainting results. Note that 1 represents the 

utermost layer. 

. Experiments 

To demonstrate the superiority of our approach against state-of- 

he-art methods, both quantitative and qualitative experiments for 

ace completion and face verification experiments are conducted. 

n this section, we will introduce the details of our experimental 

ettings and the experimental results one by one. 

.1. Datasets and protocols 

CelebA. The CelebFaces Attributes dataset [69] is widely used 

or face hallucination, image-to-image translation, etc. It’s a large- 

cale face attributes dataset containing more than 200k celebrity 

mages, which includes face images with large occlusion and pose 

ariations. We randomly select 10,0 0 0 images for testing and the 

est for training. 

CelebA-HQ. It’s a high-resolution face images dataset estab- 

ished by Karras et al. [62] , which contains 30,0 0 0 high-quality face

mages. We divide the dataset into two subsets: the training set of 

8,0 0 0 images and the testing set of 20 0 0 images. 

FFHQ. The Flickr-Faces-HQ dataset [28] is a high-quality dataset 

ontaining 70,0 0 0 face images at 1024 × 1024 resolution. It also 

overs age, ethnicity, and image background variations. We ran- 

omly choose 60 0 0 images for testing and the rest for training. 

Multi-PIE. It contains more than 750,0 0 0 images that cover 15 

iewpoints, 19 illumination conditions and a number of facial ex- 

ressions of 337 identities [70] . We follow Huang et al. [71] to split
6 
he dataset. In our experiments, we only utilize the training set to 

rain our network and the compared methods for face recognition. 

LFW. The Labeled Faces in the Wild [72] is a benchmark 

atabase commonly used for face recognition, which contains 

3,233 images of 5749 people captured in unconstrained environ- 

ents. LFW provides a standard protocol for face verification that 

ontains 60 0 0 face image pairs (including 30 0 0 positive pairs and 

0 0 0 negative pairs, respectively). We use these standard face im- 

ge pairs to evaluate face verification performance via face com- 

letion. Specially, face images in the gallery set remain the same 

hile the counterparts in the probe set are occluded by masks. We 

rstly recover the occluded face images by our proposed method 

nd the state-of-the-arts. Then, we compare the verification per- 

ormance. It’s worth noting that we only use LFW for testing. 

L2SFO. It is a large-scale synthesized face-with-occlusion 

ataset built by Yuan et al. [73] . We call it L2SFO in which face

mages are occluded by six common objects including masks, eye- 

lasses, sunglasses, cups, scarves, and hands. All the occlusions are 

ocated on face images according to segmentation information to 

ugment the reality of this dataset. It contains 991 different iden- 

ities and more than 73,0 0 0 images. We randomly select 891 iden- 

ities as the training set (about 66,0 0 0 images) and the rest as the

esting set (about 70 0 0 images). 

IJB-C. IARPA Janus Benchmark C is a dataset consisting of video 

till-frames and photos and used for face recognition benchmark 

74] . It contains 117,500 frames from 11,799 videos and 3531 sub- 

ects with 31,300 still images. We use the 1:1 protocol for face ver- 

fication, whose probe and gallery templates are combined using 

ome images and video frames for each subject. Same as the pro- 

essing procedure of LFW, images in the probe set are occluded 

nd images in the gallery set remain unchanged. We firstly gen- 

rate clean face images from occluded face images by using our 

ethod and other compared methods and then compare the face 

erification performance. IJB-C is also only used for testing. 

.2. Implementation details 

In our experiments, face images are normalized to 256 × 256 

nd 128 × 128 for high-resolution face completion and face verifi- 

ation, respectively. Following Wu et al. [5] , the landmarks in the 

enters of the eyes and mouth are used for normalizing face im- 

ges. The occluded face images are generated by MaskTheFace pro- 

osed by Anwar and Raychowdhury [75] . We randomly select mask 

ypes to occlude face images during training. Some occluded face 

mages are shown in Figs. 4 and 9 . For different experimental set- 

ings, different datasets are utilized to train our network. For face 

ompletion, we train our network on the training sets of CelebA, 

elebA-HQ, FFHQ and L2SFO, then testing on their testing sets. As 

or face verification, we train our network on the training sets of 

elebA and Multi-PIE and test on LFW and IJB-C. 
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Fig. 4. Qualitative results compared with state-of-the-arts on three datasets. From left to right, (a) are the input images with various kind of masks. (b), (c), (d), (e), (f), (g) 

and (h) are the results generated by SPADE [76] , GMCNN [77] , CycleGAN [78] , CUT [79] , DFNet [20] , CANet [27] and ours method respectively. (i) is the ground truth. 
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Our proposed method can be broken down into two stages. In 

he first stage, the inference network is trained through contrastive 

earning until convergence. And in the next stage, the pre-trained 

ncoder and the decoder are jointly trained with the fusion mod- 

le. We use the SGD optimizer with the learning rate as 0.015 for 

raining the Siamese inference network, and use the Adam opti- 

izer with the learning rate as 10 −4 for jointly training the en- 

oder and decoder. All the results are reported directly without any 

dditional post-processing. Our proposed method is implemented 

y the Pytorch framework and trained on four NVIDIA TITAN Xp 

PUs (12GB). 

.3. Face completion quantitative results 

Peak signal-to-noise ratio (PSNR), structural similarity index 

SSIM), and Fréchet Inception Distance (FID) are used as evalua- 

ion metrics. PSNR and SSIM measure the similarity between the 

npainting result and the target image. As for FID, it measures 

he Wasserstein-2 distance between real and inpainting images 

hrough the pre-trained Inception-V3. We select ‘cloth #333333’, 
7 
KN95’, ‘N95’, ‘surgical blue’, ‘cloth #515151’, ‘surgical’, ‘surgical 

reen’, ‘cloth #dadad9’ and ‘cloth #929292’ masks to occlude the 

esting images for experiments. These mask images are shown in 

ig. 4 from top to bottom. 

We conduct quantitative experiments on the testing sets of 

elebA, CelebA-HQ and FFHQ occluded by the nine kinds of masks, 

nd report the averaged results. Table 1 shows the performance 

f our proposed method against other state-of-the-art methods, 

hich consists of two image inpainting methods, GMCNN [77] and 

FNet [20] , and three image-to-image translation methods: Spade 

76] , CycleGAN [78] and CUT [79] . In Table 1 , we also conduct the

xperiments to show the improvement of performance compared 

o our prior conference work [27] . For simplicity, we call it CANet, 

hich can be regarded as a simplified version of our proposed 

ethod in this paper without Dense Correspondence Field Estima- 

ion and the identity preserving loss. We retrain all the compared 

ethods on the training sets of CelebA, CelebA-HQ and FFHQ for 

he sake of fairness. As shown in Table 1 , the proposed method and

ANet achieve the best and the second-best quantitative results in 

hree metrics on all the testing sets. The results suggest that the 
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Table 1 

Quantitative comparison on the testing sets of CelebA, CelebA-HQ and FFHQ. † Lower is better. ‡ Higher is better. 

Dataset CelebA CelebA-HQ FFHQ 

Metric PSNR ‡ SSIM ‡ FID † PSNR ‡ SSIM ‡ FID † PSNR ‡ SSIM ‡ FID † 

SPADE [76] 30.92 0.9640 1.8216 27.40 0.9321 30.07 26.27 0.9170 24.45 

GMCNN [77] 29.91 0.9563 2.6205 26.10 0.9107 13.07 25.30 0.8963 8.72 

CycleGAN [78] 24.47 0.9063 4.9871 21.94 0.8446 13.75 21.13 0.8239 11.26 

CUT [79] 24.55 0.9115 5.4059 22.65 0.8690 15.58 21.68 0.8429 12.75 

DFNet [20] 32.18 0.9706 4.2948 28.90 0.9494 8.40 29.33 0.9453 11.94 

CANet [27] 32.49 0.9731 0.9778 29.89 0.9545 4.23 29.70 0.9501 2.12 

Ours 33.26 0.9769 0.7981 30.67 0.9607 3.53 30.42 0.9580 1.75 

Fig. 5. Face completion results in the wild. (a) is the inputs. (g) is the results generated by our method. (b) - (g) are results produced by SPADE, GMCNN, CycleGAN, CUT, 

DFNet and CANet, respectively. 
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roposed method can generate very realistic face images while the 

ompared methods may not work well encountered various kinds 

f masks. The main reasons for the relatively low performance of 

he compared methods (excluding CANet) are that 1): face images 

ith various kinds of masks dramatically increase the difficulty of 

mage inpainting, hindering the ability of the representation learn- 

ng of the encoder; 2): exiting methods take generating realistic 

mages into account but ignore the structural consistency of the 

enerated image. The reason why the performance of our method 

s higher than CANet may be that Dense Correspondence Field Esti- 

ation keeps the geometric information of the human face intact 

uring the face completion process. 

.4. Face completion qualitative results 

We compare our proposed method with state-of-the-art meth- 

ds in terms of visual and semantic coherence. We conduct quali- 

ative experiments on the testing sets of three datasets with vari- 

us kinds of masks. As shown in Fig. 4 , we mask the testing images

ith the nine kinds of masks as described in the last section. 

Among all these compared methods, there are severe artifacts 

n results produced by SPADE, CUT, and DFNet. Thus, the qualities 

f generated images are far from the requirements. The reason is 

hat various kinds of masks hinder their networks to capture pow- 

rful representations. There are no obvious artifacts in face images 

roduced by CycleGAN. But it fails to maintain the geometric in- 

ormation of face images and produce obvious color contrasts. The 

eason is that CycleGAN endeavors to translate the input to its cor- 

espondence non-mask face image and ignores the structural con- 

istency. As for GMCNN, it produces relatively appealing results, 

ut there are significant differences in color at the edges. CANet 

roduces better results in which the facial geometric information is 

aintained but there are still artifacts, especially in the corners of 

he mouth. Compared with other methods, our proposed method 
8 
an generate natural inpainting results with reasonable semantics 

nd richer textures with the help of the self-supervised Siamese 

nference network, the dense correspondence field, and the DAF 

odule. It demonstrates that our proposed method is superior to 

he compared methods in terms of consistent structures and col- 

rs. 

.5. Face completion in the wild 

Furthermore, we also conduct experiments on a real-world 

asked face dataset (RMFD) [80] . Note that there are no ground 

ruth images in it. Therefore, we directly use our model and the 

ompared models to evaluate on this dataset. As shown in Fig. 5 , 

lthough there is a huge domain gap between our training sets and 

he real-world masked face dataset, our method can still generate 

elatively satisfactory results, which demonstrates the superiority 

f our proposed method. At the same time, some compared meth- 

ds can not remove masks effectively, such as (d) and (e) in Fig. 5 .

We also provide the corresponding quantitative comparative 

xperiments by using FID, Learned Perceptual Image Similarity 

LPIPS) [81] , F1-Score and Realism in Table 2 . LPIPS measures the 

iversity of images by calculating the similarity in the feature 

pace from the pre-trained AlexNet [82] . F1-Score is the harmonic 

ean of recall and precision , where precision is calculated by query- 

ng whether each generated image is within the estimated mani- 

old of real images and recall is calculated by querying whether 

ach real image is within the estimated manifold of generated im- 

ges [83] . Realism is a metric that reflects the distance between the 

mage and the manifold: the closer the image is to the manifold, 

he higher Realism is, and the further the image is from the mani- 

old, the lower Realism is [83] . It clearly demonstrates the superi- 

rity of our proposed method in dealing with masked face images 

n real world. 
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Table 2 

Quantitative comparison on the real world face dataset (RMFD). † Lower is better. ‡ Higher is 

better. 

Methods SPADE GMCNN CycleGAN CUT DFNet CANet Ours 

FID † 113.52 150.98 167.73 179.78 173.41 103.34 98.39 

LPIPS † 0.0827 0.1065 0.1116 0.1303 0.1208 0.0812 0.0709 

F1-Score ‡ 0.026 0.0139 0.0022 0.0034 0.0022 0.0219 0.0493 

Realism ‡ 0.7613 0.7443 0.7089 0.6819 0.6759 0.7723 0.7883 

Table 3 

Face verification results on LFW. ’Masked’ means face verification experiments are conducted between the masked 

probe set and the unchanged gallery set directly. 

Model Metric Masked SPADE GMCNN CycleGAN CUT DFNet CANet Ours 

ArcFace [84] AUC 97.51 98.02 97.78 97.65 97.88 97.50 98.09 98.38 

FPR = 1% 77.71 81.52 79.93 78.28 79.86 78.05 82.12 83.10 

FPR = 0.1% 44.85 45.56 43.33 44.38 46.43 45.79 50.07 56.84 

LightCNN [5] AUC 99.20 99.29 99.30 99.24 99.30 99.20 99.34 99.49 

FPR = 1% 91.04 92.56 92.63 91.95 92.36 76.87 93.40 94.41 

FPR = 0.1% 77.13 74.41 77.78 76.06 80.34 64.85 80.34 82.73 

FaceNet [85] AUC 98.98 99.08 99.03 99.02 99.03 98.98 99.10 99.30 

FPR = 1% 85.96 87.51 87.14 86.40 86.30 86.06 87.97 90.17 

FPR = 0.1% 55.56 57.07 53.10 54.31 56.06 55.72 56.03 57.85 

Table 4 

Quantitative comparison on the L2SFO dataset. † Lower is better. ‡ Higher is better. 

Methods SPADE GMCNN CycleGAN CUT DFNet CANet Ours 

PSNR ‡ 22.6 22.57 20.11 20.2 22.73 23.3 23.69 

SSIM ‡ 0.8775 0.8785 0.8297 0.8292 0.8805 0.8975 0.9007 

FID † 40.59 44.31 64.09 62.12 33.04 31.6 29.14 

Table 5 

Face verification results on IJB-C. ’Masked’ means face verification experiments are conducted between the masked 

probe set and the unchanged gallery set directly. 

Model Metric Masked SPADE GMCNN CycleGAN CUT DFNet CANet Ours 

ArcFace AUC 97.46 97.60 97.68 97.56 97.57 97.66 97.77 98.03 

FPR = 1% 80.07 80.98 81.60 81.18 81.14 81.61 82.23 84.38 

FPR = 0.1% 60.53 61.73 62.49 62.41 61.93 62.86 63.33 67.21 

LightCNN AUC 99.13 99.16 99.15 99.14 99.14 99.14 99.14 99.20 

FPR = 1% 93.50 93.90 93.70 93.68 93.56 93.68 93.88 94.62 

FPR = 0.1% 83.99 84.97 84.50 84.47 84.22 84.61 85.31 87.20 

FaceNet AUC 99.15 99.18 99.15 99.17 99.16 99.18 99.22 99.27 

FPR = 1% 91.76 92.11 91.67 91.73 91.82 91.86 92.40 92.94 

FPR = 0.1% 78.47 79.15 78.43 78.72 78.59 79.14 79.72 80.88 
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.6. Face completion on free-Form occlusions 

In the above three sections, we mainly conduct quantitative and 

ualitative experiments on face images with masks. In order to 

emonstrate the effectiveness of our method, we conduct exper- 

ments on the L2SFO dataset [73] in which face images are oc- 

luded by six common objects, i.e, masks, eyeglasses, sunglasses, 

ups, scarves, and hands. We conduct quantitative experiments on 

he testing set of L2SFO, and report the averaged results. we also 

etrain all the compared methods on the training sets of L2SFO for 

he sake of fairness. Table 4 shows the performance of our pro- 

osed method against other compared methods. Our method out- 

erforms all the other compared methods in three metrics on the 

esting sets as shown in this table. The results suggest that the pro- 

osed method can still extend to other kinds of occlusions. 

We also compare our proposed method with the state-of-the- 

rt methods in terms of the visual quality on the testing set of 

2SFO. As shown in Fig. 6 , we find that SPADE and GMCNN can

emove occlusions, but there are serious artifacts in the gener- 

ted images. CycleGAN and CUT fail to remove occlusions in some 

ases. Because they adopt unsupervised learning and hardly han- 

le face images with complex occlusions. DFNet and CANet achieve 

o

9 
elatively high-quality results. However, there are still artifacts in 

he generated face images produced by them. Different from all 

he compared methods, the proposed method can generate photo- 

ealistic face images. 

.7. Face verification results 

In order to quantitatively evaluate the feasibility of our method 

or face verification, we compare the results of our method and the 

ompared methods on LFW and IJB-C following the testing proto- 

ol as described in Sec 4.1 . Face verification experiments are con- 

ucted between the recovered probe set and the unchanged gallery 

et. Three publicly released face recognition models are tested: 

he LightCNN [5] , ArcFace [84] and FaceNet [85] . We use the area

nder the ROC curve (AUC), true positive rates at 1% and 0.1% 

TPR@FPR = 1%, TPR@FPR = 0.1%) as the evaluation metrics in the ex- 

eriments. The results are reported in Tables 3 and 5 . 

We use the masked probe set as a baseline to demonstrate the 

nfluences of face completion on face verification. From Table 3 , we 

an see that our method brings dramatic improvement to face ver- 

fication. Because our method can keep geometric information in- 

act and generate face images with consistent structures and col- 

rs. Compared with the baseline, our method can achieve an in- 
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Fig. 6. Face completion results on the L2SFO dataset. From left to right, (a) are the input images. (b), (c), (d), (e), (f), (g) and (h) are the results generated by SPADE, GMCNN, 

CycleGAN, CUT, DFNet, CANet and ours method respectively.. 

Fig. 7. The ROC curves on the LFW dataset using LightCNN. 
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Fig. 8. Images produced by the variants of our proposed method. (a) is the input 

with the ’cloth #33333’ mask. (i) is the result generated by the full model. (b)-(h) 

are results generated by the variant models according to Table 7 . 

Table 6 

The inference time (seconds) on GPU and CPU. 

Inference Time SPADE GMCNN CycleGAN CUT DFNet Ours 

GPU 0.023 0.023 0.025 0.006 0.019 0.017 

CPU 1.505 1.474 4.132 1.075 0.188 0.248 
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rease of more than 10% in TPR@FPR = 0.1% on LFW and an increase

f 6.68% in TPR@FPR = 0.1% on IJB-C, which demonstrates that our 

roposed method can ameliorate the negative impact of masks. 

imilar to our method, the compared methods endeavor to recover 

ace images. However, we find that the face verification perfor- 

ances of some compared methods decrease actually, especially in 

PR@FPR = 0.1%. For instance, the performance of CycleGAN drops 

rom 77.13% to 76.06% on LFW, a drop of about 1% when taking 

he metric TPR@FAR = 1% and using LightCNN as the face feature 

xtractor. From Table 5 , we can also see that the compared meth- 

ds do not show obvious advantages over the baseline (’Masked’) 

n IJB-C. For example, the performance of CUT is 91.82%, a very 

imited improvement of 0.006% over the baseline when taking the 

etric TPR@FAR = 1% and using FaceNet as the face feature extrac- 

or. For the poor performances of compared methods on LFW and 

JB-C, the reason may lie in two aspects. The first reason is that the 

ompared methods can not generate high-quality face images. The 

ther reason is that they can not recover discriminative informa- 

ion of a face image due to the great negative effects of masks. We 

lso present the ROC curves on LFW in Fig. 7 . It is obvious that our

ethod outperforms all the compared methods. 
10 
.8. Time complexity 

We conduct the time complexity experiments on a single GPU 

TITAN Xp) and CPU, respectively. To evaluate the inference time 

or different methods, we randomly sample 10 0 0 testing images 

nd run forward one time for each image. Then we report the 

ean inference time for one image. As shown in Table 6 , our 

roposed method achieves a pleasing time performance compared 

ith the other methods. It runs the second fast on a single TITAN 

p GPU. The fastest method is CUT on GPU. Because the number 

f parameters of CUT is only about a quarter of our method. How- 

ver, as can be seen from Table 1 and Fig. 4 , our method outper-
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Fig. 9. Images produced by the multi-scale decoder. (a) is the inputs with a ’KN95’ mask. (b) is the final inpainting results. (c), (d), (e) and (f) are outputs at multi-scale. (g) 

and (h) are the estimated U and V maps, respectively. 

Fig. 10. Model performance affected by the weight of the UV loss on the FFHQ dataset.. 

Table 7 

Ablation study experiments on the testing set of CelebA. † Lower is better. ‡ Higher is better. CL 

means Contrastive Learning. 

CL ✗ 
√ 

✗ ✗ 
√ √ 

✗ 
√ 

DAF ✗ ✗ 
√ 

✗ 
√ 

✗ 
√ √ 

UV map ✗ ✗ ✗ 
√ 

✗ 
√ √ √ 

PSNR ‡ 29.71 31.04 31.82 31.11 32.02 32.20 32.40 32.82 

SSIM ‡ 0.9568 0.9664 0.9674 0.9663 0.9702 0.9708 0.9723 0.9755 

FID † 1.9657 1.4729 1.3899 1.5059 1.259 1.3806 0.9872 0.9040 
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n

orms CUT with a large margin. When running on CPU, our pro- 

osed method is faster than SPADE, GMCNN, CycleGAN and CUT 

nd achieves the comparable performance against DFNet. 

.9. Ablation study 

We investigate the effectiveness of different components of the 

roposed method on the testing set of CelebA. We train sev- 

ral variants of the proposed method: remove the self-supervised 

iamese inference network (denote as contrastive learning), the 

AF module, and/or the dense correspondence estimation (denoted 

s UV map). As shown in Table 7 , it clearly demonstrates that the

elf-supervised Siamese inference network, the DAF module, and 

he dense correspondence field estimation play important roles in 

etermining the performance. As shown in Fig. 8 , the uncompleted 

odels usually generate images with obvious artifacts, especially 

n boundaries while our full model can suppress color discrepancy 

nd artifacts in boundaries and produce realistic inpainting results. 

The multi-scale decoder can progressively refine the inpainting 

esults at each scale. We also conduct experiments on the testing 

et of FFHQ. Then we visualize the images predicted by the de- 

oder at several scales. As shown in Fig. 9 , it demonstrates that 

his multi-scale architecture is beneficial for decoding learned rep- 

esentations into generated images layer by layer. 
11 
We conduct sufficient experiments on the FFHQ dataset to ex- 

lore the performance variation of our model affected by the 

eight of the UV loss function. We plot some figures according 

o the experimental results ( Fig. 10 ). The horizontal axis represents 

he weight of the UV loss function. We use eight different weights 

o design the experiment, i.e, 0, 0.001, 0.01 0.05, 0.1, 0.5, 1 and 

0. From Fig. 10 , we can see that PSNR gradually increases with 

he increase of weight, reaches the maximum value when weight 

s equal to 0.1, and then drops sharply. The variation of SSIM is 

oughly the same as that of PSNR. The value of FID decreases dra- 

atically from about 4 at the weight of 0 to around 2.5 at the 

eight of 0.001 and reaches the bottom (about 1.7) at the weight 

f 0.1. From these experiments, we can see that the UV loss (or 

ense Correspondence Field Estimation ) plays an important role in 

etermining the performance since it can keep the geometric infor- 

ation of the human face intact during the face completion pro- 

ess. 

. Conclusion 

In this paper, we propose a novel two-stage paradigm image 

npainting method to generate smoother results with reasonable 

emantics and richer textures. Specifically, the proposed method 

oosts the ability of the representation learning of the inference 

etwork by using contrastive learning. For keeping the geometric 
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nformation of the input face image intact, we introduce a dense 

orrespondence field that binds the 2D and 3D surface spaces into 

ur network. We further design a novel dual attention fusion mod- 

le, which can be embedded into decoder layers in a plug-and-play 

ay. Extensive experiments show the superiority of our proposed 

ethod in generating smoother, more coherent, and fine-detailed 

esults, and demonstrate our method can greatly improve the per- 

ormance of face verification. 
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