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Abstract. Real-world face hallucination is a challenging image transla-
tion problem. There exist various unknown transformations in real-world
LR images that are hard to be modeled using traditional image degra-
dation procedures. To address this issue, this paper proposes a novel
pipeline, which consists of a style Variational Autoencoder (styleVAE)
and an SR network incorporated with an attention mechanism. To get
real-world-like low-quality images paired with the HR images, we design
the styleVAE to transfer the complex nuisance factors in real-world LR
images to the generated LR images. We also use mutual information esti-
mation (MI) to get better style information. In addition, both global and
local attention residual blocks are proposed to learn long-range depen-
dencies and local texture details, respectively. It is worth noticing that
styleVAE is presented in a plug-and-play manner and thus can help to
improve the generalization and robustness of our SR method as well as
other SR methods. Extensive experiments demonstrate that our method
is effective and generalizable both quantitatively and qualitatively.

1 Introduction

Single image super-resolution (SISR) aims to infer a natural high-resolution (HR)
image from the low-resolution (LR) input. Recently, many deep learning based
super-resolution (SR) methods have been greatly developed and achieved promis-
ing results. These methods are mostly trained on paired LR and HR images,
while the LR images are usually obtained by performing a predefined degrada-
tion mode on the HR images, e.g., bicubic interpolation.

However, there is a huge difference between the LR images after bicubic inter-
polation and real-world LR images. There are various nuisance factors leading to
image quality degeneration, e.g., motion blur, lens aberration and sensor noise.
Moreover, these nuisance factors are usually unknown and mixed up with each
other, making the real-world SR task challenging. The LR generated manually
can only simulate limited patterns and methods trained on them inherently lack
the ability to deal with real-world SR issues.
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In order to solve this problem, we propose a generative network based on
variational autoencoders (VAEs) to synthesize real-world-like LR images. The
essential idea is derived from the separable property of image style and image
content, which has been widely explored in image style transfer [7,14,18]. It
means that one can change the style of an image while preserving its content.
Based on these previous researches, we propose to consider the fore-mentioned
nuisance factors as a special case of image styles. We then design styleVAE to
transfer the complex nuisance factors in real-world LR images to generated LR
images. In this manner, real-world-like LR images, as well as LR-HR pairs, are
generated automatically. Furthermore, styleVAE is presented as a plug-and-play
component and can also be applied to existing SR methods to improve their
generalization and robustness.

In addition, we build an SR network for real-world super-resolution. Following
the principle of global priority in human visual perception systems, our proposed
SR network consists mainly of two modules. On the one hand, we develop a global
attention residual block (GARB) to capture long-range dependency correlations,
helping the SR network to focus on global topology information. On the other
hand, we introduce a local attention residual block (LARB) for better feature
learning, which is essential to infer high-frequency information in images.

In summary, we make the following contributions: (1) we propose to generate
paired LR and HR images with a newly designed styleVAE by learning real-world
degradation modes; (2) we propose an SR network with two kinds of attention
modules for real-world super-resolution; (3) extensive experiments on real-world
LR images demonstrate that styleVAE effectively facilitates SR methods and
the proposed SR network achieves state-of-the-art results.

2 Related Work

Some previous methods make use of the specific static information of face images
obtained by the face analysis technique. Zhu et al. [28] utilized the dense corre-
spondence field estimation to help recovering textual details. Meanwhile, some
other methods use face image prior knowledge obtained by CNN or GAN-based
network. For example, Chen and Bulat [2,5] utilized facial geometric priors, such
as parsing maps or face landmark heatmaps, to super-resolve LR face images.
Moreover, some wavelet-based methods have also been proposed. Huang et al.
[13] introduced a method combined with wavelet transformation to predict the
corresponding wavelet coefficients.

3 Methodology

Figure 1 shows the overall architecture of our method that consists of two stages.
In the first stage, styleVAE is proposed to generate real-world-like LR images.
In the second stage, the generated LR images paired with the corresponding HR
images are fed into the SR network.
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Fig. 1. Overall architecture the proposed network. StyleVAE takes unpaired LR and
HR images as its inputs to generate real-world-like LR images. SR network takes paired
real-world-like LR and HR images as its inputs. By simulating image degradation
processes in reality through styleVAE, we can improve the performance of SR methods
for real-world SISR.

3.1 Style Variational Autoencoder

We adopt Adaptive Instance Normal (AdaIN) to transfer nuisance factors in
real-world LR images to generated LR images. There are two inference networks
ELR and EHR, and one generator G in styleVAE. ELR and EHR project input
real-world LR images and HR images into two latent spaces, representing style
information and content information, respectively. The two latent codes pro-
duced by ELR and EHR are combined in a style transfer way (AdaIN) rather
than concatenated directly. The style information y (i.e., ZLR) controls AdaIN
[7] operations after each residual block in the generator G.

Following VAE, we use the Kullback-Leibler (KL) divergence to regularize
the latent space obtained by ELR. The ELR branch has two output variables,
i.e., μ and σ. To a reparameterization trick, we have ZLR = μLR + σ � ε, where
ε ∼ N (0, I), � means Hadamard product; μ and σ denote the mean and the
standard deviation, respectively. Given N data samples, the posterior distribu-
tion qφ(z|xLR) is constrained through Kullback-Leibler divergence:

Lkl = KL(qφ(z|xLR)||p(z)) =
1

2N

N∑

i=1

M∑

j=1

(1 + log(σ2
ij) − μ2

ji − σ2
ij), (1)
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Fig. 2. The proposed GA module in GARB. The ⊗ denotes the matrix multiplication
operation.

where qφ(·) is the inference network ELR. The prior p(z) is the standard multi-
variate Gaussian distribution. M is the dimension of z.

The generator pθ(yLR|zLR, zHR) in styleVAE is required to generate LR
images yLR from the latent space zHR and the learned distribution zLR. Similar
[13,14], we use a pre-trained VGG network [23] to calculate the following loss
function:

Lstyle = αLc + βLs, (2)

where α and β are the weights for the content loss and the style loss, respectively.
Here we set α and β to 1 and 0.1, respectively. It defines at a specific layer J of
the VGG network [23]:

Lc =
∥∥φJ(yLR) − φJ(xHR)

∥∥2

F
, (3)

where yLR and xHR denote generated the LR images and the corresponding HR
images, respectively. We resize the size of xHR to match that of yLR. Further-
more, Ls is defined by a weighted sum of the style loss at different layers of the
pre-trained VGG network:

Ls =
∑

i

wiLi
s(yLR, xLR), (4)

where wi is the trade-off factor for the style loss Li
s at ith layer of the pre-

trained VGG network. Li
s is computed as the Euclidean distance between the

Gram matrices of the feature maps for yLR and xLR.

Mutual Information Maximization. The purpose of the inference network
ELR is to extract the style information. To gain style representation better, the
mutual information between real-world and generated LR images is required to
be maximized as follows:

Lmi = sup
θ∈Θ

Ep(xLR,yLR) [Tθ] − log(Ep(xLR)⊗p(xHR)[eTθ ]), (5)
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Fig. 3. The proposed LA module in LARB. Different from GA, it obtains the com-
posability between a target pixel and a pixel from the visible scope of the target pixel
instead of all pixels of images.

where Tθ denotes a static deep neural network parameterized by θ ∈ Θ. The
inputs of the Tθ are empirically drawn from the joint distribution p(xLR,yLR) and
the product of the marginal pxLR

⊗ pyLR
.

According to all the loss functions mentioned above, the overall loss to opti-
mize styleVAE is formulated as:

LstyleV AE = λ1Lkl + λ2Lstyle + λ3Lmi, (6)

where λ1, λ2, and λ3 are the trade-off factors.

3.2 Super-Resolution Network

Our proposed SR network mainly consists of global attention residual block
(GARB) and local attention residual block (LARB).

Global Attention Residual Block. As shown in Fig. 2, we propose a global
attention residual block to learn long-range dependencies by using the global
attention (GA) module [25]. It maintains efficiency in calculation and statistics.
There is a skip connection in GARB due to the success of residual blocks (RBs)
[27] (See Fig. 1). The GA module is formulated as follows:

βj,i =
exp(si,j)∑N
i=1 exp(si,j)

, (7)

where si,j = f(xi)T g(xj) (f(x) = Wfx, g(x) = Wgx) represents that the feature
maps of the former hidden layer are projected into two latent spaces to obtain the
attention value. βi,j indicates the degree of attention that the ith position receives
when generating the jth area. The output of the attention layer is defined as:

oj = v(
N∑

i=1

β(j,i)h(xi)), (8)
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where h(xi) = Whxi, v(xi) = Wvxi. The above Wf , Wg, Wh, Wv are imple-
mented by a convolution layer with kernel size 1 × 1. We connect oi and xi in a
residual way, so the final output is shown as below:

yi = λoi + xi, (9)

where λ is a learnable scalar.

Local Attention Residual Block. As shown in Fig. 3, we also propose a
local attention residual block (LARB) to capture local details through the local
attention (LA) module [9]. The LA module forms local pixel pairs with a flexible
bottom-up way, which efficiently deals with visual patterns with increasing size
and complexity. We use a general method of relational modeling to calculate the
LA module, which is defined as:

ω(p
′
, p) = softmax(Φ(fθq

(xp′ ), fθk
(xp))), (10)

where ω(p
′
, p) obtains a representation at one pixel by computing the compos-

ability between it (target pixel p
′
) and a pixel p in its visible position range.

Transformation functions fθq
and fθk

are implemented by 1 × 1 convolution
layer. The function Φ is chosen the squared difference:

Φ(qp′ , kp) = −(qp′ − kp)2. (11)

4 Experiments

In this section, we firstly introduce the datasets and implementation in detail.
Then we evaluate our proposed method from both qualitative and quantitative
aspects.

4.1 Datasets and Implementation

Training Dataset. As illustrated in [3], we select the following four datasets
to build the HR training dataset that contains 180k faces. The first is a subset
of VGGFace2 [4] that contains images with 10 large poses for each identity (9k
identities). The second is a subset of Celeb-A [22] that contains 60k faces. The
third is the whole AFLW [17] that contains 25k faces used for facial landmark
localization originally. The last is a subset of LS3D-W [1] that contains face
images with various poses.

We also utilize the WIDER FACE [24] to build a real-world LR dataset.
WIDER FACE is a face detection benchmark dataset that consists of more than
32k images affected by various noise and degradation types. We randomly select
90% images in the LR training dataset.

Testing Dataset. Another 10% images from WIDER FACE described in the
latest section are selected as real-world LR testing dataset. We conduct experi-
ments on it to verify the performance of our proposed method.
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Fig. 4. Comparisons with the state-of-art methods (4×). (a) Input real-world LR
images. (b) Results of SRCNN [6]. (c) Results of SRGAN [20]. (d) Results of VDSR
[15]. (e) Results of EDSR [21]. (f) Results of RDN [27]. (g) Results of [3]’s method (h)
Our results. Compared with other methods, our proposed pipeline reconstructs sharper
SR images with better details.

Implementation Details. Our proposed styleVAE is trained on the unpaired
training HR and LR images for 10 epochs. After that, the paired LR-HR dataset
is created used to train the SR network with 50 epochs. We train our styleVAE
and SR network through the ADAM algorithm [16] with β1 = 0.9, β2 = 0.999.
The learning rate is initially set to 10−4 and remains unchanged during the train-
ing process. The weights λ1, λ2, and λ3 are set as 0.01, 1, and 0.1, respectively.
We use PyTorch to implement our models and train them on NVIDIA Titan Xp
GPUs.

4.2 Experimental Results

Real-World Images. In this section, We conduct experiments on the test-
ing dataset described in Sect. 4.1. In order to evaluate the performance of our
proposed method, we compare with the following state-of-the-art methods both
numerically and qualitatively: SRCNN [6], SRGAN [20], VDSR [15], EDSR [21],
Bulat’s method [3] and RDN [26]. We retrain all these compared methods for
the sake of fairness on our HR training dataset with the default configurations
described in their respective papers. Note that LR images are produced by apply-
ing a bicubic kernel to the corresponding HR images.
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Table 1. Results of different SR methods. The second and third columns show PSNR
and SSIM based performance on synthetic real-world-like LR images (Higher is better).
The fourth column shows FID based performance on our testing dataset (Lower is
better).

Method PSNR SSIM FID

BICUBIC 21.19 0.5570 288.47

SRCNN [6] 19.57 0.4030 256.78

SRGAN [20] 20.36 0.5007 179.70

VDSR [15] 20.61 0.5584 144.29

EDSR [21] 20.44 0.5137 129.93

RDN [27] 18.18 0.4063 162.04

Bulat’s [3] 22.76 0.6296 149.97

Ours 24.16 0.7197 98.61

Table 2. Results of experiments on deep plug-and-play SR in FID. (Lower is better).

Data Type Scale SRCNN EDSR

BICUBIC ×4 256.78 129.93

styleVAE ×4 198.75 107.63

In numerical terms, we use Fréchet Inception Distance (FID) [8] to measure
the quality of the generated images since there are no corresponding HR images.
The quantitative results of different SR methods on our testing dataset are
summarized in Table 1 (with the factor ×4). It clearly demonstrates that our
proposed method is superior to other compared approaches and achieves the
best performance on the testing dataset. We also discover that the performances
of compared methods trained on bicubic-downsampled LR images are degraded
when applied to real-world LR images. The main reason is that nuisance factors,
e.g. motion blur, lens aberration and sensor noise, are not taken into synthetic
LR images by bicubic interpolation. By training on real-world-like LR images,
our method is superior to all compared methods, and the FID value is reduced
by a maximum of 158.17.

In Fig. 4, we visually show the qualitative results the our testing dataset with
×4 scale. There are significant artifacts in HR images generated by shallower
networks, e.g. SRCNN [6] and SRGAN [20]. Serious mesh phenomenons are found
in reconstructed images by SRCNN. We also discover that generated images of
VDSR [15], EDSR [21] and RDN [27] are usually distorted. On the contrary,
SR images generated by our proposed method are more realistic than Bulat’s
method [3], since LR images produced by styleVAE exceedingly resemble real-
world LR images.

Real-World-Like Images. In order to verify the performance of the proposed
method on LR images with unknown degradation modes, we conduct exper-



270 M. Luo et al.

iment on synthetic real-world-like LR images obtained by styleVAE with ×4
scale. We utilize images from LFW [10–12,19] as the HR image inputs of styl-
eVAE to generate real-world-like LR images. The second and third columns of
Table 1 report PSNR and SSIM results of different SR methods. We find that
the performances of compared methods are very limited, even lower than that of
bicubic up-sampling directly. It also demonstrates that simulating real-world-like
LR images is an effective way to improve performance when applied to real-world
LR images.

Deep Plug-and-Play Super-Resolution. To further validate the effectiveness
of styleVAE, we design two pipelines with the help of plug-and-play framework.
We can simply plug styleVAE into SR networks to replace bicubic down-sampled
LR images that are used in many previous SR methods. We choose two of the
compared methods as the plugged SR networks: a shallower SR network SRCNN
[6] and a deeper SR network EDSR. Thus there are four versions of SR networks:
SRCNN-B and EDSR-B, trained on bicubic down-sampled LR images, SRCNN-
S and EDSR-S, trained on LR images generated by styleVAE. The FID results on
our testing dataset are reported in Table 2. As shown in Table 2, the FID values
of SRCNN-B and EDSR-B (the second row of Table 2) are higher than those of
EDSR-S and EDSR-S (the last row of the Table 2). By simulating real-world LR
images using styleVAE, SRCNN gains an improvement of 58.3 (the third column
of Table 2) and EDSR is improved by 22.3 (the last column of Table 2).

We also demonstrate the visual results in Fig. 5. As shown in Fig. 5, compared
(a) with (b), SRCNN-S effectively eliminates the mesh phenomenon in the image
generated by SRCNN-B. When training on LR images generated by styleVAE,
EDSR-S produces more pleasing results (d) rather than distorted reconstructed
images (c) by EDSR-B. Compared (b), (d) and (e), our proposed method is able
to generate sharper images.

4.3 Ablation Studies

StyleVAE. In order to investigate the effectiveness of the mutual information
estimation (MI) and Adaptive Instance Normalization (AdaIN) used in style-
VAE, we train several other variants of styleVAE: remove MI or/and AdaIN.
To evaluate the performance of these variants of styleVAE, we measure FID
between LR images generated by these variants and real-world LR images from
our testing dataset. FID results are provided in Table 3. When both AdaIN and
MI are removed, the FID value is relatively high. After arbitrarily adding one of
the two, the value of FID is decreased. For both MI and AdaIN used in style-
VAE, the FID result is the lowest. We also evaluate how similar the synthetic LR
images by bicubic down-sample and real-world LR images from WIDER FACE.
The FID result is found as 31.20. These results faithfully indicate that AdaIN
and MI are essential for styleVAE.

SR Network. Similar to the ablation investigation of styleVAE, we also train
several variants of the proposed SR network: remove the GA or/and LA mod-
ule(s) in the SR network. These several variants are trained on LR images
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(a) (b) (c) (d) (e)

Fig. 5. Results of experiments on deep plug-and-play super-resolution. (a) Results of
SRCNN-B. (b) Results of SRCNN-S. (c) Results of EDSR-B. (d) Results of EDSR-S.
(e) Results of our method. This suggests that the performance of SR methods can be
improved by training on LR images generated by styleVAE.

Table 3. Investigations of AdaIN and MI in styleVAE. We also evaluate how similar
the synthetic LR images by bicubic down-sample and real-world LR images in WIDER
FACE. The FID value between these is 31.20 (Lower is better). Results of experiments
on deep plug-and-play SR in FID. (Lower is better).

AdaIN × × � �
MI × � × �
FID 26.6 25.78 24.63 18.77

produced by performing bicubic interpolation on corresponding HR images. In
Table 4, when both the GA and LA modules are removed, the PSNR value on
LFW (with upscale factor ×4) is the lowest. When the LA module is added, the
PSNR value is increased by 0.1 dB. After adding the GA module, the perfor-
mance reaches 30.27 dB. When both attention modules are added, the perfor-
mance is the best, with a PSNR of 30.43 dB. These experimental results clearly
demonstrate that these two attention modules are necessary for the proposed
SR network and greatly improve its performance (Table 4).

Table 4. Ablation investigation on the effects of the GA and LA modules in SR
network. The PSNR (dB) values are reported on LFW (higher is better).

GA × × � �
LA × � × �
PSNR 30.08 30.18 30.27 30.43
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5 Conclusion

We have proposed a novel two-stage process to address the challenging problem of
super-resolving real-world LR images. The proposed pipeline unifies a style-based
Variational Autoencoder (styleVAE) and an SR network. Due to the participa-
tion of nuisance factors transfer and VAE, styleVAE generates real-world-like
LR images. Then the generated LR images paired with the corresponding HR
images are fed into the SR network. Our SR network firstly learns long-range
dependencies by using GARB. Then the attention of SR network moves to local
areas of images in which texture detail will be filled out through LARB. Exten-
sive experiments show our superiority over existing state-of-the-art SR methods
and the ability of styleVAE to facilitate method generalization and robustness
to real-world cases.
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