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ABSTRACT

This paper introduces InternVid, a large-scale video-centric multimodal dataset
that enables learning powerful and transferable video-text representations for mul-
timodal understanding and generation. InternVid contains over 7 million videos
lasting nearly 760K hours, yielding 234M video clips accompanied by detailed
descriptions of total 4.1B words. Our core contribution is to develop a scalable
approach to autonomously build a high-quality video-text dataset with large lan-
guage models (LLM), thereby showcasing its efficacy in learning video-language
representation at scale. Specifically, we utilize a multi-scale approach to generate
video-related descriptions. Furthermore, we introduce ViCLIP, a video-text rep-
resentation learning model based on ViT-L. Learned on InternVid via contrastive
learning, this model demonstrates leading zero-shot action recognition and com-
petitive video retrieval performance. Beyond basic video understanding tasks like
recognition and retrieval, our dataset and model have broad applications. They
are particularly beneficial for generating interleaved video-text data for learning
a video-centric dialogue system, advancing video-to-text and text-to-video gen-
eration research. These proposed resources provide a tool for researchers and
practitioners interested in multimodal video understanding and generation.

older women sitting at a table eating a bowl of 
food with chopsticks.

老祖婆就是这点好，不挑食。啥子都吃得。老祖婆坐车哪里都能去。
(The old granny is good in this aspect, she is not picky and can eat 
anything. She can go anywhere by car.)

women dressed in traditional costumes standing
in a room.

[музыка] [аплодисменты]
([Music] [Applause])

a man and a woman brushing their teeth in the 
bathroom.

分かってるわよ待ってティッシュはどこシャワーを買って閃いた
まずはこんな風に居るの (I understand, just wait. Where are the 
tissues? I had an idea to buy a shower, but for now I’ll stay like this.)

a woman in a red wagon with a child in it in a 
store as she walks through the store.

drive a car out.

Figure 1: Examples (we give three frames of each video clip), the corresponding generated captions,
and ASR transcripts in InternVid. In the captions, we highlight nouns in blue and verbs in green.
Non-English transcripts are translated to English using LLM (Brown et al., 2020).

* Equal contribution. † Corresponding authors.
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1 INTRODUCTION

Learning transferable video-text representations is both challenging and essential for video under-
standing in various real-world applications, such as autonomous driving, intelligent surveillance,
human-computer interaction, to name a few. While contrastive learning using web-scale data has
been successful in image-text representation, it remains underexplored in the video-text domain.
A key reason for this limited exploration is the lack of a high quality video-language dataset for
pretraining at scale. Current research relies on datasets like HowTo100M (Miech et al., 2019),
HD-VILA (Xue et al., 2022), and YT-Temporal (Zellers et al., 2021; 2022), whose texts are generated
using automatic speech recognition (ASR). Despite their large scale, these datasets often have low
semantic correlations between the videos and corresponding textual descriptions (Miech et al., 2019;
Xue et al., 2022; Zellers et al., 2021; 2022). Empirical studies demonstrate that improving this
correlation (e.g. aligning videos with subtitles to improve their matching) significantly benefits
downstream tasks such as video retrieval and video question answering (Bain et al., 2021). Recent
works have utilized WebVid10M (Bain et al., 2021), a dataset with higher-quality alt-texts, to address
the low video-text correlation issue. However, its limited scale and dynamics hinder its use in current
data and model scaling studies. Specifically, only 10M video-text pairs are provided, and the depicted
scenes contain relatively few actions or activities.
We propose a large-scale video-centric dataset InternVid to address the challenge of scaling up video-
language modeling while maintaining high video-text correspondence. Visual examples are given
in Figure 1. Note the ASR transcripts barely depict visual elements in videos while the generated
captions do. The dataset contains highly-correlated video-text pairs and includes over 7 million
videos, totaling 760,000 hours and resulting in 234 million video clips, with various subsets for
different needs. These videos cover 16 scenarios and around 6 thousand motion descriptions. To
improve video-text matching, we generate captions using a multiscale approach. In the coarse scale,
we caption the middle frame of each video and use the description as the video caption. In the fine
scale, we produce and summarize frame-by-frame captions with a language model.
Leveraging InternVid, we scale a video-language transformer (ViT-L) in contrastive learning from a
data perspective, and its experiments prove InternVid enables learning scalable video-text models.
We introduce video masking to the model to accelerate the whole learning without compromising its
effectiveness. The video and text encoders are initialized from the CLIP pretrained model with the
same scale. With InternVid, we learn a video-text model for several epochs, achieving impressive
zero-shot performance. Compared with previous Video CLIP variants, our proposed ViCLIP shows
notable performance improvement, especially in zero-shot settings.
In addition to large-scale video-language contrastive pretraining, we discover its effectiveness in
producing interleaved video-text data for learning a video-centric dialogue system like Flamingo
(Alayrac et al., 2022; Awadalla et al., 2023), and advancing video generation. Since the text-annotated
clips are extracted from videos, we naturally collect clips and their corresponding text based on
the sampling locations. This results in approximately 7 million interleaved data pieces, suitable for
instruction tuning as multi-turn video-centric dialogue. For video generation, we filter the core set
and obtain 18 million video clips. Alongside WebVid-10M, InternVid can significantly improve a
stable-diffusion based video generation model to new heights.
In summary, our contributions are threefold.

• We introduce a new web-scale video-language dataset InternVid. This dataset, aimed at advancing
video-related multimodal understanding and generation at scale, is created using a multi-scale
video captioning approach powered by LLM, ensuring high-quality video-text data with minimal
human intervention. It includes computational features (video-text correlation and visual aesthetics)
across the whole dataset and gives way to diverse subsets to cater to varying training needs.

• We learn a new video-language model, ViCLIP, which is trained on InternVid using ViT-L. It
incorporates both contrastive learning and mask modeling, allowing for efficient learning of
transferrable video-language representation. This model achieves state-of-the-art zero-shot action
recognition in Kinetics, scoring 75.7, 73.5, and 66.4 on K400, K600, and K700 with the average
top1 and top5 accuracies, respectively. It gets competitive performance on video retrieval, setting a
new baseline for video-text understanding.

• InternVid fosters the development of multimodal dialogue systems and text-to-video generation.
ViCLIP learned on InternVid could serve as a backbone of video-centric dialogue systems (Zhu
et al., 2023a; Li et al., 2023c; Liu et al., 2023), conducting tasks as action recognition, temporal
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Dataset Caption Domain #Videos #Clips LenClip LenCap Dur(h) Res
MSR-VTT (Xu et al., 2016) Manual open 7.2K 10K 15.0 9.3 40 240P

DideMo (Anne Hendricks et al., 2017) Manual Flickr 10.5K 27K 6.9 8.0 87 -
LSMDC (Rohrbach et al., 2017) Manual movie 200 118K 4.8 7.0 158 1080P

YouCook2 (Zhou et al., 2018) Manual cooking 2K 14K 19.6 8.8 176 -
How2 (Sanabria et al., 2018) Manual instruct 13.2K 80K 90.0 20.0 2K -

ANet Caption (Krishna et al., 2017) Manual action 20K 100K 36.0 13.5 849 -
VideoCC3M (Nagrani et al., 2022) Transfer open 6.3M 10.3M 10 - 17.5K -

WebVid10M (Bain et al., 2021) Alt-text open 10.7M 10.7M 18.0 12.0 52K 360P
WTS70M (Stroud et al., 2020) Metadata action 70M 70M 10 - 194K -

HowTo100M (Miech et al., 2019) ASR instruct 1.2M 136M 3.6 4.0 134.5K 240P
HD-VILA-100M (Xue et al., 2022) ASR open 3.3M 103M 13.4 32.5 371.5K 720P

YT-Temporal-180M (Zellers et al., 2021) ASR open 6M 180M - - - -
InternVid (ours) Generated open 7.1M 234M 11.7 17.6 760.3K 720P

Table 1: Statistics of InternVid and its comparison with existing video-language datasets.

understanding, reasoning, and creativity within an open-ended environment. Furthermore, we
provide a subset, InternVid-Aes, aiding in generating high-resolution watermark-free videos.
Utilizing InternVid-Aes, both visual and quantitative outcomes of a text-to-video baseline can be
noticeably enhanced (FVD: 705.3 → 616.5).

2 RELATED WORK

Multimodal Datasets. Vision-text data are necessary to enable crossmodal learning. To learn vison-
language representation effectively, these datasets should be large at scale and high at vision-text
correlations. To this end, researches usually leverage existing web images with alt-text (Thomee et al.,
2016; Sharma et al., 2018; Changpinyo et al., 2021; Hu et al., 2022; Desai et al., 2021; Schuhmann
et al., 2022) and videos with ASR transcriptions (Miech et al., 2019; Zellers et al., 2021; 2022; Xue
et al., 2022; Bain et al., 2021; Srinivasan et al., 2021) for scalable learning.
For video-centric multimodal datasets, HowTo100M (Miech et al., 2019) collected instructional
YouTube videos and exploited the corresponding ASR subtitles for learning joint representations.
Nagrani et al. (2022) proposed VideoCC3M by transferring image-text datasets to video ones. Zellers
et al. (2021; 2022) and Xue et al. (2022) proposed YT-Temporal and HD-VILA for Audio-Visual-Text
joint learning and high-resolution video crossmodal learning, respectively. On the other hand, Bain
et al. (2021) found video-text alignment matters more than their quantities, so they produced WebVid
(Bain et al., 2021) where 10M videos with the corresponding alt-texts. This is frequently employed
in recent video-language pretraining approaches (Li et al., 2023d; Cheng et al., 2023).
Video Understanding. Pretraining large-scale video-text models and fine-tuning them for down-
stream tasks has become the norm in the video-language field (Miech et al., 2020; Li & Wang, 2020;
Xu et al., 2021; Li et al., 2023d; 2022a; Xu et al., 2021; Hu et al., 2022; Dou et al., 2022; Shen et al.,
2021; Yao et al., 2021; Sun et al., 2019; Zhu & Yang, 2020; Wang et al., 2022b; Chen et al., 2022;
Zellers et al., 2021; 2022; Zeng et al., 2023b;a; Chen et al., 2023a;b; He et al., 2023; Chen et al.,
2023c). Early techniques (Sun et al., 2019; Zhu & Yang, 2020) used pretrained visual and language
encoders to obtain offline video and text features, but recent methods (Li & Wang, 2020; Miech et al.,
2020; Hu et al., 2022; Dou et al., 2022; Tong et al., 2022; Wang et al., 2023) highlight the advantages
of end-to-end training. Common practices include two or three pretraining tasks, such as masked
language modeling (Li et al., 2022b), video-text matching (Wang et al., 2022a), video-text contrastive
learning (Xu et al., 2021; Wang et al., 2022b), masked video modeling (Tong et al., 2022; Wang et al.,
2023; 2022b), and video-text masked modeling (Fu et al., 2021).
In the multimodal video context, VIOLET (Fu et al., 2021) combined masked language and video
modeling, while All-in-one (Wang et al., 2022a) proposed a unified pretraining with a shared
backbone. LAVENDER (Li et al., 2022b) unified tasks through masked language modeling. Despite
their success in multimodal benchmarks, these methods’ reliance on limited video-text data hampers
performance in video-only tasks like action recognition. Conversely, InternVideo (Wang et al., 2022b)
and UMT (Li et al., 2023d) combined masked modeling with crossmodal contrastive learning, leading
to competitive performance in both video-only and video-language tasks. MERLOT Reserve (Zellers
et al., 2022) exploited 20 million video-text-audio pairs for training joint video representations using
contrastive matching, setting new standards in video recognition and visual commonsense reasoning.
To address modality entanglement in crossmodal learning, mPLUG-2 (Xu et al., 2023) introduced a
shared module across image, video, and text to encourage modality collaboration while reserving
modality-specific modules for their differences.
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Figure 2: The proposed multiscale video caption pipeline. The captions in coarse and fine scales are
marked in green and blue, respectively.

3 INTERNVID: A VIDEO-CENTRIC MULTIMODAL DATASET

A high-quality video-text dataset at scale is a premise to conduct large-scale video-language learning
and associated tasks. We build this dataset considering three factors: substantial temporal dynamics,
rich and diverse semantics, and strong video-text correlations. To improve the temporal dynamics
in the dataset, we gather videos retrieved using action/activity-based query words. For rich and
varied semantics, we not only crawl trending videos across various categories but also deliberately
increase the proportion of data consciously collected from various countries and languages. To
strengthen video-text correlations, we employ image captioning and language models to generate
video descriptions from frame-specific annotations. Next, we elaborate the dataset construction
process and discuss its characteristics.

3.1 DATA CURATION

We collect videos from YouTube considering the diversity and richness of its data, and its support for
academic usage. We obtain 7 million public YouTube videos with an average duration of 6.4 minutes,
covering 16 topics. To avoid the overlap with the existing datasets, we acquire videos by creating
a database of YouTube video IDs and excluding any videos already present in publicly available
datasets (released prior to April 2023). The data curation strategies are two-fold. On one hand, We
select popular channels and the corresponding hot or high-rated videos from the categories e.g. news,
gaming, etc., resulting in 2 million videos. On the other hand, we create a list of motion descriptions.
With it, we obtain 5.1 million videos by choosing the top retrieved ones.
Defining Actions for Queries. We define around 6K action phrases from American Time Use
Survey (ATUS), public video datasets, and text corpus. Then they are refined both manually and
automatically. We employ actions from ATUS from 2017 to 2022 (Heilbron et al., 2015), merging
them and removing the duplicates. For the used video datasets, we leverage Kinetics (Carreira &
Zisserman, 2017), SomethingSomething (Goyal et al., 2017; Mahdisoltani et al., 2018), UCF101
(Soomro et al., 2012), and so on. This provides us with 1103 action labels. Moreover, we access
several visual grounding corpus (Song et al., 2021; Yang et al., 2022; Li et al., 2017). A language
model (Brown et al., 2020) is employed to extract actions and their corresponding targets (if exist)
to form phrases from the corpus, leading to 5001 actions with manual checking. Totally, we collect
6104 action queries for searching videos.
Collection Strategies. For quality control, we establish crawling rules. We collect videos that are
between 10 seconds and 30 minutes in duration and have resolutions ranging from 360P to 720P.
Videos with resolutions above 720P are processed to 720P. To enrich the dataset descriptions, we
gather videos with their audio, subtitles, titles, summaries, and other metadata.
Trimming. We segment videos into clips using scene variance. We directly employ the corresponding
filter in PySceneDetect with a threshold as 27. During this procedure, we also filter out clips in still
or extreme dynamics (e.g. a browse of a photo gallery). After the filtering, we get 234M clips.

3.2 MULTISCALE VIDEO CAPTIONING

To generate video captions that are scalable, rich, and diverse, we employ a multiscale method with
two distinct captioning strategies, as depicted in Figure 2. On the finer scale, we simplify the video
captioning process by concentrating on the common objects, actions, and scene descriptions within the
video clip. We deliberately overlook intricate details such as subtle facial expressions & movements,
and other nuanced elements. On the coarser scale, we adopt the single-frame bias assumption from
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Figure 3: Video statistics in InternVid. It encompasses a diverse set of categories, gathered from
multiple countries and averaging a duration of five minutes.

36%

26%

23%

8% 0.0s~2.0s

2.0s~4.0s

4.0s~10.0s

10.0s~20.0s

>20s

7%

Clip  Durations

34%

55%

4%
7%

0~10words

10~20words

20~30words

>30words

Clip  Caption Length

0

0.15

0.3

0.45

0

0.3

0.6

0.9

UMT-SIM & Aesthetic 

UMT-SIM Aesthetic Score

Figure 4: Clip statistics in InternVid. InternVid contains a diverse distribution of clip durations and
caption lengths. It also offers aesthetic scores and multimodal similarity scores for each clip.

(Lei et al., 2022) and exclusively caption the central frame of the video. Given our focus on brief clips
(around 10 seconds) filtered via scene segmentation, most videos predominantly display consistent
objects without substantial appearance alterations. This circumvents the identity-preserving issue
when dealing with videos from image perspectives. We employ the lightweight image captioning
model Tag2Text (Huang et al., 2023b) for the finer scale, which describes videos at low fps in a
frame-by-frame manner. These individual image captions are then synthesized into a comprehensive
video description using a pretrained language model T5-summary (Raffel et al., 2020; Chiang et al.,
2023). At the coarser scale, we use BLIP2 (Li et al., 2023b) to caption the middle frame of the clip.

3.3 STATISTICS AND FEATURES

We present the statistics of InternVid with other video-language datasets in Table 1. We collected
videos from 16 mainstream categories, as in Figure 3. Unlike prior studies (Miech et al., 2019; Xue
et al., 2022; Zellers et al., 2021), we emphasize diversity by selecting videos from countries with
different languages instead of only English. In terms of duration, every video lasts 351.9s on average.
Almost half (49%) of the videos are five minutes or less, while a quarter (26%) fall between five
and ten minutes. Among the curated videos, 85% were high-resolution (720P), while the remaining
15% had lower resolutions ranging from 360P to 720P. Though the lower-resolution videos may not
support high-quality video generation, they can still be useful in video-text representation learning.
InternVid exhibits diverse clip durations and caption lengths at the clip level. The aesthetic scores
and clip-caption similarities are distributed uniformly, as shown in Figure 4. The majority of clips are
0-10 seconds in length, accounting for 85% of all clips (Figure 4: left). Approximately half of the
clips have captions with 10-20 words. The statistics of the captions and transcripts is given in App. C.
We measured the aesthetic scores and clip-caption similarity of all clips using the models in (Schuh-
mann et al., 2022) and (Li et al., 2023d), respectively, as given in Figure 4: right. Based on these
scores, we can build different versions of InternVid for various purposes. We uniformly sampled
four frames of each clip, calculated their aesthetic scores, and took the maximum score as the video
aesthetic score. For clip-caption similarity, we computed the cosine similarity between video embed-
dings and text ones, again using a uniform sampling of four frames for each clip. Most clips score
around 4-6 in aesthetics, accounting for approximately 75% of the data. For UMT-SIM 1, over 80%
of the clips scored between 0.3-0.4.

3.4 INTERLEAVED VIDEO-TEXT DATA GENERATION

Utilizing video-caption data, we can develop an interleaved video-text dataset for generative mul-
timodal pretraining. Previous researches (Alayrac et al., 2022; Awadalla et al., 2023; Huang et al.,
2023a; Zhu et al., 2023b) confirm that pretraining on the interleaved image-text sequences results in
significant multimodal in-context abilities. Our work makes the initial step in creating a large-scale

1UMT-SIM refers to the use of Unmasked Teacher (UMT) (Li et al., 2023d) to compute the similarity score
between a given video clip and the accompanying text.
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Figure 5: Interleaved video-text data generation in InternVid with three formats.

Figure 6: Framework of ViCLIP.

interleaved video-text dataset InternVid-ICL, containing 7.1M interleaved video-text data pairs. We
give three methods for organizing clips and their captions: (1): Arrange clips and their descriptions
sequentially based on their temporal order within the same video, as illustrated in Figure 5 (a). (2):
Enhance diversity in interleaved video-text items by assigning ASR text to a used clip in addition to
its caption, as demonstrated in Figure 5 (b). (3): Extend method (1) by concatenating two interleaved
multimodal items, creating a video-centric dialogue simulating user queries involving multiple videos
(Figure 5 (c)). One visual example of these arrangements is provided in Table 8.

4 VICLIP: LEARNING VIDEO-TEXT REPRESENTATION AT SCALE

Built upon CLIP (Radford et al., 2021), we make a simple video-text pretraining baseline ViCLIP.
It consists of a video encoder (ViT) (Dosovitskiy et al., 2021) and a text encoder, as given in
Figure 6. Both modules are initialized from the corresponding CLIP components. We update the
native attention in the video encoder to spatiotemporal attention while maintaining other designs.
For efficient learning, we apply masking to videos in pre-training. The optimization target is the
contrastive loss between input video and text embeddings.
Video & Text Encoders with Masking Learning. Our video encoder uses a ViT with spatiotemporal
attention. We apply random patch masking following MAE-based methods (Tong et al., 2022; Wang
et al., 2023) to the input videos. It significantly alleviates the computational burden. The used text
encoder is also a transformer followed by (Radford et al., 2021; Schuhmann et al., 2022).
Unmasked Video-Text Pretraining. We feed all visual tokens into the video transformer instead of
just the masked ones towards the end of the pretraining process. This helps bridge the gap between
pretraining and downstream applications where the full video is used as input. We perform unmasked
training for 0.5 epochs with a learning rate of 4e-6.
Training Objectives. Our framework optimizes video-text alignment. It minimizes InfoNCE loss
(Oord et al., 2018) using global video and text features, as

LC = LV→T
C +LT→V

C = −
N∑
i=1

log
exp(sim(fV

i , fT
i )/τ)∑N

j=1 exp(sim(fV
i , fT

j )/τ)
−

N∑
i=1

log
exp(sim(fT

i , fV
i )/τ)∑N

j=1 exp(sim(fT
i , fV

j )/τ)
, (1)

where fV and fT denote the learned video and text embeddings, respectively. sim(·) computes the
cosine similarity between two features. τ is the learnable temperature.

5 EXPERIMENTS

We learn ViCLIP on subsets of InternVid and evaluated its performance on video-related benchmarks
using full-finetuned and zero-shot settings. We sample subsets InternVid-10M, InternVid-50M, and
InternVid-200M randomly. Sampling details are given in App. E.1.
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Method Training Data K400 K600 K700
top-1 (↑) AVG (↑) top-1 (↑) AVG (↑) top-1 (↑) AVG (↑)

CLIP (Radford et al., 2021) CLIP400M (Radford et al., 2021) 58.42 70.14 55.11 67.16 46.12 58.38
CLIP (Radford et al., 2021) DataComp-1B (Gadre et al., 2023) 56.14 67.67 54.15 65.83 45.36 57.01
EVA-CLIP-L (Sun et al., 2023) Merged-2B (Sun et al., 2023) - 65.00 - 64.90 - 59.10
EVA-CLIP-E (Sun et al., 2023) LAION-2B (Schuhmann et al., 2022) - 69.80 - 69.30 - 63.40
ViCLIP +WebVid10M (Bain et al., 2021) 59.88 71.03 58.66 69.84 50.23 61.86
ViCLIP +InternVid-10M 56.68 68.17 54.67 66.28 46.53 58.73
ViCLIP +InternVid-50M 57.18 68.93 55.36 67.07 47.00 59.36
ViCLIP +InternVid-200M 59.80 71.09 57.80 69.34 49.30 61.25
ViCLIP +InternVid-10M-DIV 63.00 74.15 60.68 72.07 52.50 64.59
ViCLIP +InternVid-10M-FLT 64.80 75.70 62.20 73.53 54.30 66.38

Table 2: Zero-shot action recognition results on Kinetics 400/600/700.

Method Training Data K400 SthSthV2
top-1 (↑) top-5 (↑) top-1 (↑) top-5 (↑)

CLIP (Radford et al., 2021) CLIP400M (Radford et al., 2021) 86.7 97.2 70.1 92.5
CLIP (Radford et al., 2021) DataComp-1B (Gadre et al., 2023) 85.6 96.8 68.9 91.8
ViCLIP +WebVid10M (Bain et al., 2021) 85.0 96.8 68.7 91.9
ViCLIP +InternVid-10M-FLT 86.8 97.5 71.2 93.2
ViCLIP +InternVid-10M-FLT+K710 88.0 97.8 71.8 93.6
ViCLIP +InternVid-200M 87.9 97.9 73.6 94.9
ViCLIP +InternVid-200M+K710 88.7 98.2 74.2 95.0

Table 3: Fine-tuned action recognition results on Kinetics 400 and SomethingSomethingV2.

5.1 TRANSFERABLE VIDEO REPRESENTATION PERFORMANCE

Action Recognition. In addition to OpenAI’s CLIP-L (CLIP400M (Radford et al., 2021)) and LAION
(DataComp-1B (Gadre et al., 2023)), we also include EVA-CLIP-L/14 and EVA-CLIP-E/14 (Sun
et al., 2023) for comparison. More experimental settings are given in App. E.2.
Zero-Shot. Table 2 shows that when trained on InternVid-10M-FLT, ViCLIP outperforms all other
methods, including EVA-CLIP-E. This result validates InternVid’s effectiveness in learning video-
text embeddings. Note that ViCLIP with InternVid-10M-FLT sets new records on zero-shot action
recognition in Kinetics 400/600/700, demonstrating a significant performance boost compared to
ViCLIP with WebVid10M or other models. Moreover, ViCLIP trained on InternVid-10M-FLT
exceeds its performance on InternVid-200M. Normally, we would expect the model trained on
InternVid-200M to perform better than those on -10M-DIV or -FLT, given that the latter two subsets
derive from the former. Unless this discrepancy results from improper learning, we conjecture that
false negative samples could severely impede video-text contrastive learning if we don’t purposefully
reduce the number of clips taken from the same video. Specifically, we hypothesize that clips from
the same video share similar representations and captions. Contrastive learning, however, assumes
these clips to be different. This situation also undermines the significance of using a large batch size
in current training since it increases the probability of encountering more false negatives.
Fine-tuned. In Table 3, note when comparing ViCLIP trained on InternVid with image CLIP models or
ViCLIP trained with WebVid, there is a clear increase in accuracy. Unlike the zero-shot results, when
ViCLIP is pretrained with a larger number (200M) of video-text data pairs, it achieves higher accuracy
in fine-tuned recognition tasks (87.9% in K400 and 73.6% in SthSthV2) compared to when pretrained
(86.8% in K400 and 71.2% in SthSthV2) with fewer data (10M). This suggests that InternVid provides
greater benefits for fine-tuned action-related tasks. The decrease in performance of ViCLIP with
WebVid highlights the importance of addressing the distribution gap between WebVid and the action
videos used for evaluation, emphasizing the need to collect videos with evident temporal dynamics.
Video-Text Retrieval. We evaluate the video retrieval performance of baselines and ViCLIP using
different pretraining datasets on five popular benchmarks (Heilbron et al., 2015; Xu et al., 2016;
Rohrbach et al., 2015; Anne Hendricks et al., 2017; Chen & Dolan, 2011), as shown in Table 4 and
5. We uniformly sample eight frames from the input videos. For the CLIP models from OpenAI
(Radford et al., 2021) and LAION (Schuhmann et al., 2022), we utilize their officially released ViT-L
models and extract video embeddings by averaging the computed frame-wise image embeddings.
Our ViCLIP directly predicts video embeddings. For evaluating retrieval performance, we report
R@1 scores for both text-to-video (t2v) and video-to-text (v2t) tasks in 4 and 5.
Both Table 4 and 5 demonstrate that video-language pretraining is crucial for enhancing fine-tuned
and zero-shot retrieval performance. This point is substantiated by the comparison between CLIP
and ViCLIP using InternVid-50M. Table 4 exhibits a boost of nearly 4-10 points across different
benchmarks in the zero-shot setting. Meanwhile, Table 5 shows an increase of approximately 10
points across all R@1 scores in the fine-tuned setting.
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Method Data MSR-VTT LSMDC DiDeMo MSVD ANet
T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

CLIP (Radford et al., 2021) CLIP400M (Radford et al., 2021) 29.0 25.8 13.9 15.2 11.5 19.1 37.9 60.0 8.3 12.2
CLIP (Radford et al., 2021) DataComp-1B (Gadre et al., 2023) 30.4 24.2 13.9 11.9 12.7 18.7 40.5 57.2 9.1 13.2
CLIP4Clip (Luo et al., 2022) +HowTo100M (Miech et al., 2019) 32.0 - 15.1 - - - 38.5 - - -
ViCLIP +WebVid10M (Bain et al., 2021) 35.6 33.1 16.5 13.4 14.5 23.3 45.3 69.0 12.4 19.0

ViCLIP +InternVid-10M 36.4 37.1 17.1 15.0 16.4 25.9 45.2 69.8 13.5 23.4
ViCLIP +InternVid-50M 39.7 40.7 18.0 16.7 16.7 26.4 46.5 72.2 13.6 23.2
ViCLIP +InternVid-200M 39.3 39.5 18.3 16.6 17.1 25.5 47.3 70.0 13.7 21.6
ViCLIP +InternVid-10M-DIV 41.5 41.6 18.5 17.4 17.7 26.2 48.6 71.9 14.8 23.4
ViCLIP +InternVid-10M-FLT 42.4 41.3 20.1 16.9 18.4 27.9 49.1 75.1 15.1 24.0

Table 4: Results of zero-shot video retrieval on MSR-VTT, LSMDC, DiDeMo, MSVD, and ANet.

Method Data MSR-VTT LSMDC DiDeMo MSVD ANet
T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

CLIP (Radford et al., 2021) CLIP400M (Radford et al., 2021) 38.2 38.7 22.5 22.6 32.2 33.9 67.3 69.9 26.1 26.9
CLIP (Radford et al., 2021) DataComp-1B (Gadre et al., 2023) 37.2 37.5 18.7 18.5 33.5 34.2 66.3 70.2 24.5 25.8
CLIP4Clip (Luo et al., 2022) +HowTo100M Miech et al. (2019) 45.6 45.9 24.3 23.8 43.0 43.6 45.2 48.4 40.3 41.6
ViCLIP +WebVid10M (Bain et al., 2021) 50.8 49.3 27.3 28.4 48.1 48.5 76.7 81.2 44.5 43.2

ViCLIP +InternVid-10M 51.8 49.7 28.5 29.4 49.5 50.6 77.2 80.0 49.7 48.4
ViCLIP +InternVid-50M 52.8 52.2 30.9 30.9 49.4 48.7 78.1 80.0 49.7 49.0
ViCLIP +InternVid-200M 53.7 53.4 29.3 31.3 51.1 50.8 79.9 78.4 52.8 51.1
ViCLIP +InternVid-10M-DIV 55.0 53.3 32.0 30.0 51.7 52.1 75.8 77.8 50.4 48.9
ViCLIP +InternVid-10M-FLT 52.5 51.8 33.0 32.5 49.4 50.2 77.2 79.0 49.8 48.1

Table 5: Results of fine-tuned video retrieval on MSR-VTT, LSMDC, DiDeMo, MSVD, and ANet.

Zero-Shot. Table 4 reveals InternVid-10M outperforms WebVid when employing the same method,
ViCLIP, with an average increase of 6.3% in R@1 across nearly all benchmarks. This improvement
can be further amplified by diversifying the training clips used, as InternVid-10M-DIV and -FLT
surpass WebVid on ViCLIP with gains in R@1 of 14.0% and 17.1%, respectively. These results
underline, once again, the effectiveness of the correspondence between our generated video captions
and their corresponding videos. Comparing CLIP4Clip using HowTo100M with ViCLIP using Web-
Vid10M or InternVid-10M shows that the correlation between video and text influences performance
more significantly than their quantity. Moreover, the zero-shot performance demonstrates that the
video-text representation learned using InternVid is transferable. This claim is supported by its
superior performance across multiple video retrieval benchmarks.
Fine-Tuned. Table 5 exhibits a noticeable improvement when transitioning from InternVid-10M to
WebVid10M while using ViCLIP for both t2v and v2t retrieval across almost all datasets. On average,
there is a 3.7% increase in t2v R@1 across all benchmarks, with particularly significant rise observed
in ActivityNet (an increase of over 11.9%). However, ViCLIP using WebVid10M yields better v2t
R@1 scores than when using InternVid-10M (81.2 vs. 80.0). We believe this does not alter the overall
trend that InternVid-10M generally provides more advantage to ViCLIP than WebVid10M does.
The benefits of used video data become even more apparent when comparing InternVid-10M-DIV
or InternVid-10M-FLT with WebVid10M. Their overall increases are 5.8% and 5.1%, respectively.
Despite these improvements, issues related to data diversity persist.
Data Scaling and Issues. Figure 7 and 8 illustrate how ViCLIP’s performance changes in zero-
shot and fine-tuning settings when varying the scale of InternVid. In both scenarios, increasing
the data scale results in significant increases in performance. As shown in Figure 7, ViCLIP’s
discriminative ability linearly increases with the increasing volume of training videos used (10M →
200M). Meanwhile, Figure 8 shows that the retrieval performance increase becomes marginal when
scaling the training data beyond 50M. It’s vital to note our model is trained using only contrastive loss
without employing popular designs such as matching head and its corresponding loss. Consequently,
this retrieval result doesn’t allow for any definitive conclusions about whether there exists a turning
point after which scaling up the training videos becomes less beneficial currently. More explorations
are necessary in these retrieval experiments. However, these findings generally suggest that enhancing
the scale of pretraining data can improve the transferability of the learned representation.

5.2 OTHER APPLICATIONS

Text-to-Video Generation. Our InternVid dataset improves existing text-to-video (t2v) generation
models by providing high-quality video-text pairs. We extend spatiotemporal modeling on the latent
space of a text-to-image diffusion model (Rombach et al., 2022) as a t2v baseline. We train the
baseline with two settings: one using WebVid10M, and the other using InternVid-Aes-18M in addition
to WebVid10M. InternVid-Aes-18M is a subset of InternVid consisting of clips with an aesthetic
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Figure 7: Zero-shot action recognition (top-1 ac-
curacy) on Kinetics-400 / -600 / -700.

Figure 8: Video retrieval average performance
(text-to-video R@1) across five datasets.

Method Training Data UCF-101 MSR-VTT
IS (↑) FID (↓) FVD (↓) CLIPSIM (↑)

VideoCrafter2 WebVid10M (Bain et al., 2021) 18.26 66.95 910.87 0.2875
VideoFusion 3 WebVid10M (Bain et al., 2021) 17.49 75.77 639.90 0.2795

t2v baseline WebVid10M (Bain et al., 2021) 13.97 98.25 705.25 0.2657
t2v baseline WebVid10M+InternVid18M 21.04+7.07 60.25−38.00 616.51−88.74 0.2951+0.0294

Table 6: Zero-shot text-to-video generation performance.

score of at least 4. Quantitative (Table 6) and qualitative (Figure 12) evaluations demonstrate the
effectiveness of InternVid in video generation tasks. Evaluation protocols are given in App. E.3.
In Table 6, we observe that t2v baseline trained on WebVid10M performs poorly in terms of IS, FID,
and CLIPSIM when compared to other approaches. However, with the addition of InternVid-Aes, t2v
baseline demonstrates significant improvements in these metrics and outperforms other methods by
a considerable margin. In Figure 12, we observe that the t2v baseline using both WebVid10M and
InternVid-Aes-18M significantly outperforms others in visual quality and temporal coherence. These
results demonstrate the potential of InternVid for high-quality video generation.
Video-Centric Dialogue System. Inspired by recent vision-centric dialogue systems (Li et al.,
2023c; Muhammad Maaz & Khan, 2023; Li et al., 2023a), we integrate our pretrained ViCLIP
(with InternVid) into VideoChat (Li et al., 2023c) to show how our data and model can empower
multimodal dialogue methods with effective video modeling capability. In implementation, we inherit
nearly all designs of VideoChat-Embed, just replacing its visual encoder with our ViCLIP (trained on
InternVid). We evaluate VideoChat-ViCLIP in spatial understanding (Figure 13), action recognition
(Figure 14), temporal understanding (Figure 15), video reasoning (Figure 16), and video creative
(Figure 17) tasks. Our qualitative evaluations demonstrate its decent video-to-text capabilities.

Evaluation Aspect Correctness Detail Contextual Temporal Consistency Avgof Information Orientation Understanding Understanding
VideoChat (Eva-g) 2.23 2.50 2.53 1.94 2.24 2.29
Video-ChatGPT 2.40 2.52 2.62 1.98 2.37 2.38
VideoChat-ViCLIP 2.86 2.52 3.08 2.36 2.40 2.64

Table 7: Performance benchmarking of text generation models.

In terms of quantitative comparison, as shown in Table 5.2, VideoChat-ViCLIP notably outperforms
the vanilla VideoChat (using Eva-g as the vision encoder) and others across all evaluation aspects
of the video conversation evaluation in the work of Muhammad Maaz & Khan (2023). Specifically,
the model shows remarkable improvements in the correctness of information (from 2.23 to 2.86),
contextual understanding (from 2.53 to 3.08), and temporal understanding (from 1.94 to 2.36). The
average score also increases from 2.29 to 2.64, showing an overall performance gain.

6 CONCLUSION

Our dataset, InternVid, is designed for multimodal research (both understanding and generation)
focused on videos. It consists of over 200 million video clips sourced from 7 million high-resolution
YouTube videos. We use existing models with a multiscale approach to generate clip-level descrip-
tions. Our studies confirm the efficacy of captions, and the large volume of video-text data enables
crossmodal learning and text-to-video generation at scale. By training with our data, we develop a
video-text representation baseline ViCLIP using ViT-L and analyze briefly how the data scale affects
learned crossmodal embeddings. In addition to perception tasks, we show that InternVid improves
text-to-video generation and supports multimodal dialogue systems. With its data, annotations,
metadata, and computed scores, we believe InternVid can fuel a variety of studies and applications.
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efficient exact attention with io-awareness. NeurIPS, 35:16344–16359, 2022.

Karan Desai, Gaurav Kaul, Zubin Aysola, and Justin Johnson. Redcaps: Web-curated image-text data
created by the people, for the people. arXiv preprint arXiv:2111.11431, 2021.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang, Chenguang Zhu,
Pengchuan Zhang, Lu Yuan, Nanyun Peng, et al. An empirical study of training end-to-end
vision-and-language transformers. In CVPR, 2022.

Tsu-Jui Fu, Linjie Li, Zhe Gan, Kevin Lin, William Yang Wang, Lijuan Wang, and Zicheng Liu.
Violet: End-to-end video-language transformers with masked visual-token modeling. arXiv
preprint arXiv:2111.12681, 2021.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao Nguyen,
Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, et al. Datacomp: In search of the
next generation of multimodal datasets. arXiv preprint arXiv:2304.14108, 2023.

Songwei Ge, Thomas Hayes, Harry Yang, Xi Yin, Guan Pang, David Jacobs, Jia-Bin Huang, and
Devi Parikh. Long video generation with time-agnostic vqgan and time-sensitive transformer. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XVII, pp. 102–118. Springer, 2022.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne Westphal,
Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al. The”
something something” video database for learning and evaluating visual common sense. In ICCV,
pp. 5842–5850, 2017.

Xingjian He, Sihan Chen, Fan Ma, Zhicheng Huang, Xiaojie Jin, Zikang Liu, Dongmei Fu, Yi Yang,
Jing Liu, and Jiashi Feng. Vlab: Enhancing video language pre-training by feature adapting and
blending. arXiv preprint arXiv:2305.13167, 2023.

Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Activitynet:
A large-scale video benchmark for human activity understanding. In 2015 IEEE conference on
computer vision and pattern recognition (CVPR), pp. 961–970. IEEE, 2015.

Xiaowei Hu, Zhe Gan, Jianfeng Wang, Zhengyuan Yang, Zicheng Liu, Yumao Lu, and Lijuan Wang.
Scaling up vision-language pre-training for image captioning. In CVPR, pp. 17980–17989, 2022.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao
Lv, Lei Cui, Owais Khan Mohammed, Qiang Liu, et al. Language is not all you need: Aligning
perception with language models. arXiv preprint arXiv:2302.14045, 2023a.

Xinyu Huang, Youcai Zhang, Jinyu Ma, Weiwei Tian, Rui Feng, Yuejie Zhang, Yaqian Li, Yandong
Guo, and Lei Zhang. Tag2text: Guiding vision-language model via image tagging. arXiv preprint
arXiv:2303.05657, 2023b.

Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning
events in videos. In ICCV, pp. 706–715, 2017.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/


Published as a conference paper at ICLR 2024

Jie Lei, Tamara L Berg, and Mohit Bansal. Revealing single frame bias for video-and-language
learning. arXiv preprint arXiv:2206.03428, 2022.

Bo Li, Yuanhan Zhang, Liangyu Chen, Jinghao Wang, Fanyi Pu, Jingkang Yang, Chunyuan Li, and
Ziwei Liu. Mimic-it: Multi-modal in-context instruction tuning. arXiv preprint arXiv:2306.05425,
2023a.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Limin Wang, and Yu Qiao. Uni-
formerv2: Spatiotemporal learning by arming image vits with video uniformer. arXiv preprint
arXiv:2211.09552, 2022a.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang, and
Yu Qiao. Videochat: Chat-centric video understanding. arXiv preprint arXiv:2305.06355, 2023c.

Kunchang Li, Yali Wang, Yizhuo Li, Yi Wang, Yinan He, Limin Wang, and Yu Qiao. Unmasked
teacher: Towards training-efficient video foundation models. arXiv preprint arXiv:2303.16058,
2023d.

Linjie Li, Zhe Gan, Kevin Lin, Chung-Ching Lin, Zicheng Liu, Ce Liu, and Lijuan Wang. Laven-
der: Unifying video-language understanding as masked language modeling. arXiv preprint
arXiv:2206.07160, 2022b.

Tianhao Li and Limin Wang. Learning spatiotemporal features via video and text pair discrimination.
CoRR, abs/2001.05691, 2020. URL https://arxiv.org/abs/2001.05691.

Zhenyang Li, Ran Tao, Efstratios Gavves, Cees G. M. Snoek, and Arnold W. M. Smeulders. Tracking
by natural language specification. CVPR, 2017.

Zhaoyang Liu, Yinan He, Wenhai Wang, Weiyun Wang, Yi Wang, Shoufa Chen, Qinglong Zhang,
Yang Yang, Qingyun Li, Jiashuo Yu, et al. Internchat: Solving vision-centric tasks by interacting
with chatbots beyond language. arXiv preprint arXiv:2305.05662, 2023.

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui Li. Clip4clip: An
empirical study of clip for end to end video clip retrieval and captioning. Neurocomputing, 2022.

Zhengxiong Luo, Dayou Chen, Yingya Zhang, Yan Huang, Liang Wang, Yujun Shen, Deli Zhao,
Jingren Zhou, and Tieniu Tan. Videofusion: Decomposed diffusion models for high-quality video
generation. In CVPR, pp. 10209–10218, 2023.

Farzaneh Mahdisoltani, Guillaume Berger, Waseem Gharbieh, David Fleet, and Roland Memisevic.
On the effectiveness of task granularity for transfer learning. arXiv preprint arXiv:1804.09235,
2018.

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac, Makarand Tapaswi, Ivan Laptev, and Josef
Sivic. Howto100m: Learning a text-video embedding by watching hundred million narrated video
clips. In ICCV, pp. 2630–2640, 2019.

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan Laptev, Josef Sivic, and Andrew Zisser-
man. End-to-end learning of visual representations from uncurated instructional videos. In CVPR,
2020.

Salman Khan Muhammad Maaz, Hanoona Rasheed and Fahad Khan. Video-chatgpt: Towards
detailed video understanding via large vision and language models. ArXiv 2306.05424, 2023.

Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja Hauth, Santiago Manen, Chen Sun, and
Cordelia Schmid. Learning audio-video modalities from image captions. In ECCV, pp. 407–426.
Springer, 2022.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

12

https://arxiv.org/abs/2001.05691


Published as a conference paper at ICLR 2024

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pp. 8748–8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 21(1):5485–5551, 2020.

Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt Schiele. A dataset for movie description.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3202–3212,
2015.

Anna Rohrbach, Atousa Torabi, Marcus Rohrbach, Niket Tandon, Christopher Pal, Hugo Larochelle,
Aaron Courville, and Bernt Schiele. Movie description. IJCV, 123:94–120, 2017.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In CVPR, pp. 10684–10695, 2022.

Ramon Sanabria, Ozan Caglayan, Shruti Palaskar, Desmond Elliott, Loı̈c Barrault, Lucia Specia, and
Florian Metze. How2: a large-scale dataset for multimodal language understanding. arXiv preprint
arXiv:1811.00347, 2018.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b:
An open large-scale dataset for training next generation image-text models. arXiv preprint
arXiv:2210.08402, 2022.

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In ACL, pp. 2556–2565, 2018.

Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei
Yao, and Kurt Keutzer. How much can clip benefit vision-and-language tasks? arXiv preprint
arXiv:2107.06383, 2021.

Sijie Song, Xudong Lin, Jiaying Liu, Zongming Guo, and Shih-Fu Chang. Co-grounding networks
with semantic attention for referring expression comprehension in videos. In CVPR, June 2021.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101 human actions
classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.

Krishna Srinivasan, Karthik Raman, Jiecao Chen, Michael Bendersky, and Marc Najork. Wit:
Wikipedia-based image text dataset for multimodal multilingual machine learning. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 2443–2449, 2021.

Jonathan C Stroud, Zhichao Lu, Chen Sun, Jia Deng, Rahul Sukthankar, Cordelia Schmid, and
David A Ross. Learning video representations from textual web supervision. arXiv preprint
arXiv:2007.14937, 2020.

Chen Sun, Austin Myers, Carl Vondrick, Kevin P. Murphy, and Cordelia Schmid. Videobert: A joint
model for video and language representation learning. ICCV, 2019.

Quan Sun, Yuxin Fang, Ledell Wu, Xinlong Wang, and Yue Cao. Eva-clip: Improved training
techniques for clip at scale. arXiv preprint arXiv:2303.15389, 2023.

Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland,
Damian Borth, and Li-Jia Li. Yfcc100m: The new data in multimedia research. Communications
of the ACM, 59(2):64–73, 2016.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. In NeurIPS, 2022. doi: 10.48550/arXiv.
2203.12602. URL https://doi.org/10.48550/arXiv.2203.12602.

13

https://doi.org/10.48550/arXiv.2203.12602


Published as a conference paper at ICLR 2024

Alex Jinpeng Wang, Yixiao Ge, Rui Yan, Yuying Ge, Xudong Lin, Guanyu Cai, Jianping Wu,
Ying Shan, Xiaohu Qie, and Mike Zheng Shou. All in one: Exploring unified video-language
pre-training. arXiv preprint arXiv:2203.07303, 2022a.

Limin Wang, Bingkun Huang, Zhiyu Zhao, Zhan Tong, Yinan He, Yi Wang, Yali Wang, and Yu Qiao.
Videomae v2: Scaling video masked autoencoders with dual masking. In CVPR, 2023.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu,
Yi Liu, Zun Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali Wang, Limin Wang, and
Yu Qiao. Internvideo: General video foundation models via generative and discriminative learning.
arXiv preprint arXiv:2212.03191, 2022b.

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Weixian Lei, Yuchao Gu, Wynne Hsu, Ying Shan,
Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion models for
text-to-video generation. arXiv preprint arXiv:2212.11565, 2022.

Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi,
Qi Qian, Wei Wang, et al. mplug-2: A modularized multi-modal foundation model across text,
image and video. arXiv preprint arXiv:2302.00402, 2023.

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko, Armen Aghajanyan, Florian Metze, Luke
Zettlemoyer, and Christoph Feichtenhofer. Videoclip: Contrastive pre-training for zero-shot
video-text understanding. arXiv preprint arXiv:2109.14084, 2021.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In CVPR, pp. 5288–5296, 2016.

Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun, Bei Liu, Huan Yang, Jianlong Fu, and
Baining Guo. Advancing high-resolution video-language representation with large-scale video
transcriptions. In CVPR, pp. 5036–5045, 2022.

Antoine Yang, Antoine Miech, Josef Sivic, Ivan Laptev, and Cordelia Schmid. Tubedetr: Spatio-
temporal video grounding with transformers. In CVPR, pp. 16442–16453, 2022.

Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo
Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. arXiv
preprint arXiv:2111.07783, 2021.

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu, Jae Sung Park, Jize Cao, Ali Farhadi, and
Yejin Choi. Merlot: Multimodal neural script knowledge models. NeurIPS, 34:23634–23651,
2021.

Rowan Zellers, Jiasen Lu, Ximing Lu, Youngjae Yu, Yanpeng Zhao, Mohammadreza Salehi, Aditya
Kusupati, Jack Hessel, Ali Farhadi, and Yejin Choi. Merlot reserve: Neural script knowledge
through vision and language and sound. In CVPR, pp. 16375–16387, 2022.

Ziyun Zeng, Yixiao Ge, Zhan Tong, Xihui Liu, Shu-Tao Xia, and Ying Shan. Tvtsv2: Learning
out-of-the-box spatiotemporal visual representations at scale. arXiv preprint arXiv:2305.14173,
2023a.

Ziyun Zeng, Yuying Ge, Xihui Liu, Bin Chen, Ping Luo, Shu-Tao Xia, and Yixiao Ge. Learning
transferable spatiotemporal representations from natural script knowledge. In CVPR, pp. 23079–
23089, 2023b.

Luowei Zhou, Chenliang Xu, and Jason Corso. Towards automatic learning of procedures from web
instructional videos. In AAAI, 2018.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023a.

Linchao Zhu and Yi Yang. Actbert: Learning global-local video-text representations. CVPR, 2020.

Wanrong Zhu, Jack Hessel, Anas Awadalla, Samir Yitzhak Gadre, Jesse Dodge, Alex Fang, Youngjae
Yu, Ludwig Schmidt, William Yang Wang, and Yejin Choi. Multimodal c4: An open, billion-scale
corpus of images interleaved with text. arXiv preprint arXiv:2304.06939, 2023b.

14



Published as a conference paper at ICLR 2024

Figure 9: The word cloud (Top-200) of the generated captions in the InternVid dataset reveals that
the captions predominantly highlight the rich actions of the objects.

English. Chinese.

Korean. German.

Figure 10: The word clouds of the ASR transcripts of four different languages (English, Chinese,
Korean, and German). We collect videos from various countries or regions with 11 different languages.
Here we list four of them to show how these transcripts are distributed in words.

A DATA AVAILABILITY STATEMENT

We are committed to maintaining transparency and compliance in our data collection and sharing
methods. In accordance with these principles, please note the following:

Publicly Available Data: The data utilized in our studies is publicly available. We do not use any
exclusive or private data sources.

Data Sharing Policy: Our data sharing policy builds upon the precedent set by prior works like
Kinetics, HD-VILA, and others. Instead of providing the original raw data, we only supply the
YouTube video IDs necessary for downloading the respective content.

Usage Rights: The data released by us is intended exclusively for research purposes. Any potential
commercial usage is not sanctioned under this agreement.

Compliance with YouTube Policies: Our data collection and release practices are strictly in accord
with YouTube’s data privacy policies. We ensure that no user data or privacy rights are violated
during the process.

Data Licence: We employ the protocol of CC BY 4.0.
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B LIMITATIONS & SOCIETAL IMPACT

All video data used in our research are downloaded from YouTube using Safe for Work (SFW) queries
and channels. To ensure appropriate content, we employ a simple NSFW filter: a binary classifier
designed to recognize and exclude non-ethical videos. For privacy considerations and in respect of
data sharing practices, we share only the YouTube ID of the videos, similar to previous academic
works. This approach aligns with YouTube’s data protocols and ensures no violation of privacy or
data usage rules. Despite these precautions, our work has some limitations, primarily related to data
diversity and representativeness. Although YouTube is an extensive source encompassing a wide
range of video categories, certain specific types of footage may be excluded or scarcely collected,
including: public area surveillance, sports competitions, movies, documentaries, etc. The exclusion
of such categories is often due to copyright restrictions or other limits imposed by the platform.
Therefore, while our dataset provides a broad view of everyday video content, its coverage does not
extend to every possible category or type of video. These limitations should be taken into account
when considering the generalizability of our results across all types of video data.

C MORE STATISTICS IN INTERNVID

Actionness. InternVid contains way more verbs than the WebVid10M. We used NLTK toolkit to
analyze the number of verbs in captions, focusing on tagging all unique verbs. We found a total of
109,485 verbs in the WebVid10M, while InternVid contained 212,155 ones. While the counts may
not be that accurate due to our simple counting, we believe they provide a rough indication of the
actionness of the two datasets.

Video Caption and Transcript Distribution. To analyze the word distribution of our generated
captions and multilingual (ASR) transcripts, we compute their distributions. The resulting word
distribution of the captions is presented in Figure 9, which includes objects (tv, car, door, plant, etc.),
attributes (green, young, large, long, etc.), locations (middle, behind, south, next, etc.), scenes (room,
stage, kitchen, office, etc.), actions/events (walking, eating, cutting, holding, etc.), and more.

We also include four word distributions of different languages in Figure 10, reflecting trends in
different countries and offering potential data customization along with the provided metadata.

Aesthetic Scores and Clip-Caption Similarity. We uniformly sampled four frames of each clip,
calculated their aesthetic scores, and took the maximum score as the video aesthetic score. For
clip-caption similarity, we computed the cosine similarity between video embeddings and text ones,
again using a uniform sampling of four frames for each clip.

Potential Biases. We focus on age, gender, and race distributions, as these are commonly recognized
areas where bias can occur. Our methodology consisted of counting keywords related to these
categories in the generated video captions. It’s important to note that these synthetic captions may
not fully reflect the truth of the corresponding videos, thereby creating a gap between our analysis
and the actual reality.Here are the results of our analysis:

• Age distribution: We counted nouns related to children, grown-ups, and the elderly. We found that
30.71% of the video captions contained such descriptions. Within this subset, the majority were
about adults (84.59%), followed by children (15.31%) and barely any mentions of senior citizens
(0.08%).

• Gender distribution: We counted nouns specifically related to males and females. According to
our findings, 33.7% of video captions contained some form of gender-related text. Among these,
64.27% pertained to men and 35.73% pertained to women.

• Race distribution: Only around 2.51% of video captions contained descriptions related to race.
This could be due to the limitations of our captioning pipeline, which might not be capable of
capturing such attributes accurately. Further exploration using a dedicated race recognition model
is needed for more accurate statistics.
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D INTERNVID-ICL: INTERLEAVED VIDEO-TEXT FOR IN-CONTEXT VIDEO
LEARNING

[..., "the inside of a home has a rug and a light on.", "♪
We could leave the Christmas lights up til January ♪", ...,
"woman with blond hair playing guitar", "♪ Have I known you

20 seconds or 20 years? ♪", ,
"close-up of a bathroom sink with soap bubbles and other
items", "a bathroom is seen with a sink and two lights", "a
woman swiming inside of a fishbowl with a ladder and a man",

"♪ Can I go wher you go? ♪",
, "devils roll the dice, angels roll their eyes","♪ And,
take me out, and take me home ♪" ,..., "the man is standing
in a room with pink carpet","♪ You’re my, my ♪", "a woman
in yellow is dancing with a man in a red room", "♪ My, My
lover ♪",

, "a woman is sitting on a chair,
playing a guitar and a woman holding a balloon", "♪ ♪ ♪",
"two men smiling while holding wine glasses and drinking
beer", "♪ We could let our friends crash in the living room
♪" ...]

Table 8: Interleaved video-text data format (b) in InternVid. The caption and ASR transcript of
each clip is shown in black and gray, respectively. We can achieve interleaved video-text data format
(a) by abandoning ASR transcripts. To obtain data format (c), we concatenate multiple videos with
interleaved video-text data (a).

Visual Examples. As given in the paper, we provide examples video+text interleaved entries for
in-cntext learning as Flamingo. Table 8 gives an example about format (a): arrange clips and their
descriptions sequentially based on their temporal order within the same video. Note the videos are
randomly dropped with a probability (0.3) for constructing richer text context compared with the
original video-text pair combinations in sequential.

E IMPLEMENTATION DETAILS

E.1 DIVERSITY SAMPLING IN CONSTRUCTING INTERNVID SUBSETS

For DIV (diversity sampling), we aim to sample video clips from all long videos available to maximize
data diversity. This was done by counting the frequencies of long videos in the segmented clip pool
and sampling clips with probabilities inverse to these frequencies. Here is a pseudocode example of
this process:

1 from collections import Counter
2 import json
3 import random
4 import numpy as np
5 data = json.load(open("/path/to/to_sample"))
6 video_id = set([x["video"].split("/")[-1][:11] for x in data])
7 video_id_counter = Counter([x["video"].split("/")[-1][:11] for x in data

])
8 sampling_weights = [1.0 / video_id_counter[x["video"].split("/")

[-1][:11]] for x in data]
9 np.random.seed(42)

10 sampling_weights = np.array(sampling_weights)
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config MSRVTT DiDeMo ANet LSMDC MSVD
optimizer AdamW
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.02
learning rate schedule cosine decay
learning rate 2e-5 4e-5 2e-5 2e-5 4e-5
batch size 256
warmup epochs 1
total epochs 7 8 5 10 20
input frame 12
max text length 32 96 64 64 150
drop path 0.3 0.2 0.3 0.3 0.2
flip augmentation yes
augmentation MultiScaleCrop [0.5, 1]

Table 9: Video-text retrieval fine-tuning settings.

11 sampling_weights = sampling_weights / sampling_weights.sum()
12 sampled_index = np.random.choice(len(data), 10647458, replace=False, p=

sampling_weights)
13 data = [data[i] for i in sampled_index]
14 json.dump(data, open("/path/to/sampled", "w"))

For FLT (filtering), we applied a series of filtering strategies to video data alongside DIV sampling. These
included: a) Removing video clips shorter than 1s (approximately 23.15% of the total) or longer than 120s
(around 0.84% of the total). b) Computing CLIPScore for each video clip using a randomly sampled frame from
the clip with OpenAI’s CLIP-ViT-L/14, then selecting clips within the top 30% of CLIPScores. c) Sampling
10M out of the remaining clips using DIV sampling.

E.2 VICLIP

Implementation. ViCLIP is learned with 64 NVIDIA A100 GPUs for 3 days with 50M video-text pairs. We
introduce DeepSpeed and FlashAttention (Dao et al., 2022) for training and inference.

Action Recognition. In the zero-shot action recognition, we sample 8 frames in each video. Following
the settings in CLIP and EVA-CLIP, we report the mean of top-1 and top-5 accuracy for Kinetics-400 / -600 /
-700. In Section 5.1, we show ViCLIP learnt on WebVid or InternVid is an effective zero-shot action recognition
model.

In the full fine-tuned setting, we conduct two experiments with two receipts. In Table 3, for the experiments
where the training data excluded K710, we followed the common practice of finetuning the pretrained ViCLIP
with the training data from the evaluation dataset. On the other hand, for the experiments where the training
data included K710, we adopted a training trick inspired by (Li et al., 2022a). We first finetuned the pretrained
ViCLIP with K710 (Li et al., 2022a), and then proceeded with the common supervised finetuning setting. By
incorporating the supervised finetuning with K710, ViCLIP demonstrated better performance in the fine-tuned
tasks compared to experiments that did not include K710.

Video Retrieval. In the full-finetuning setting, we tune the pretrained ViCLIP with not only video-text
contrastive loss but also video-text matching loss on the training data of the evaluated benchmarks. During both
training and testing, we sample 12 frames. Detailed hyper-parameters are given in Table 9. In the zero-shot
setting, we sample only 8 frames for evaluations.

E.3 VIDEO GENERATION BASELINE

We used the spatiotemporal modeling approach from (Wu et al., 2022) and built our text-to-video generation
baseline on the work of (Rombach et al., 2022). Our approach consists of a U-Net with a transformer that models
its latents, using interleaved spatiotemporal attention (ST-Attn), cross-attention for visual-text, a feed-forward
network (FFN), and temporal attention (T-Attn), as illustrated in Figure 11. To adapt the 2D convolutional layers
in (Rombach et al., 2022) to 3D, we extended 3× 3 kernels into 1× 3× 3 ones. We also extended the original
spatial attentions to spatiotemporal ones. We initialized our baseline using all text-to-image diffusion model
parameters, while the newly added temporal attention layers used default parameters.
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Figure 11: Framework of our text-to-video generation baseline.

Captioning
Method

Retrieval Action Recognition
Zero-Shot Fine-Tuned Zero-Shot
MSR-VTT MSR-VTT K400 K600 K700
T2V V2T T2V V2T top-1 AVG top-1 AVG top-1 AVG

VideoChat 33.9 32.3 46.6 47.1 54.68 67.74 51.70 64.91 43.67 56.51
Ours 38.6 38.5 49.0 49.2 58.52 71.11 55.37 68.27 47.09 59.98

Table 10: Video retrieval and action recognition results of ViCLIP-B trained on InternVid-FLT-10M
with the captions generated by VideoChat and our captioning approach.

For the ST-Attn implementation, we used frame embeddings from the U-Net encoder instead of video embeddings
as in (Wu et al., 2022). We concatenated the embeddings of the previous and current frame for values and keys
in attention, while using the current frame embedding alone as queries. The rest of the implementation remained
the same as the original.

Text-to-Video Evaluation. To evaluate our text-to-video model, we conducted zero-shot experiments on
the UCF-101 and MSRVTT datasets, following the method from (Blattmann et al., 2023). For UCF-101, we
used the class names as text prompts and generated 20 samples per class (total of 2,020 videos). For MSRVTT,
we randomly selected one caption per video from the official test set (total of 2,990 videos). To ensure a fair
comparison, we used the official implementation of VideoCrafter and VideoFusion (Luo et al., 2023) to generate
the same number of videos with the same text prompts. During video sampling and evaluation, we generated 16
frames per video.

We assess the overall quality of the synthesized results on UCF-101 using framewise-FID, FVD, and Inception
Score (IS), and evaluate the text-video semantic similarity on MSRVTT using clip similarity (CLIPSIM). For
framewise-FID and IS, we use the pretrained Inceptionv3 network weights as our image encoder. For FVD, we
use the pretrained InceptionI3d model and followed the TATS method (Ge et al., 2022). To compute CLIPSIM,
we calculate the clip text-image similarity for each frame with respect to the given text prompts and computed
the average score. We use the ViT-B-32 clip model as the backbone, consistent with previous work (Blattmann
et al., 2023).

F MORE RESULTS

F.1 EFFECTIVENESS OF OUR MULTISCALE CAPTIONING APPROACH

To further validate the effectiveness of our proposed captioning method, we establish a video caption baseline
using the video multimodal model VideoChat (Li et al., 2023c) for comparison. We input the video clip into the
model with the prompt "Please describe the content in the given video." and apply it
to InternVid-10M-FLT, resulting in 10 million new captions generated by VideoChat. Subsequently, we train two
versions of ViCLIP-Base using InternVid-10M-FLT, each version trained with one of the two types of captions.

Table 10 demonstrates that ViCLIP-B trained using our captions outperforms the version trained using captions
from VideoChat in both video retrieval (MSR-VTT) and action recognition (K400/600/700). These results are
particularly noteworthy considering that the only difference in training lies in the captions generated by the
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Method Data K400 K600 K700
top-1 AVG top-1 AVG top-1 AVG

ViCLIP +InternVid-2M 51.70 64.69 49.20 62.34 40.90 53.70
ViCLIP +InternVid-2M-BLIP2 38.40 51.58 36.40 49.19 29.10 40.68

Table 11: Zero-shot action recognition results of ViCLIP using different captions on Kinetics
400/600/700.

Method Data MSR-VTT LSMDC DiDeMo MSVD ANet
T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

ViCLIP +InternVid-2M 31.8 33.7 14.3 12.7 13.6 21.5 39.6 62.5 9.9 16.8
ViCLIP +InternVid-2M-BLIP2 21.7 21.9 5.2 5.1 7.1 12.7 24.6 42.1 6.4 10.2

Table 12: Results of zero-shot video retrieval from ViCLIPusing different captions on MSR-VTT,
LSMDC, DiDeMo, MSVD, and ActivityNet.

two different approaches. Therefore, these findings further confirm the superior performance of our proposed
captioning method compared to the baseline VideoChat.

We also ablate the necessary of including fine-level captions (by tag2text) more than only using coarse ones (by
BLIP2). Specifically, an ablation is performed on two subsets of the dataset (InternVid-2M and InternVid-2M-
BLIP), each having 2 million video-text pairs. InternVid-2M utilized fused captions, combining both coarse-
and fine-level ones. In contrast, InternVid-2M-BLIP only used the coarse-level captions produced by BLIP2
on the central frames. For the mentioned using fine-level captions, concatenating the framewise captions from
tag2text as the video captions is not a promising opinion as these captions are quite long and full of reptitions,
unsuitable for contrastive learning. Thus, we do not include this setting in experiments.

Zero-shot experiments are conducted on these models. Due to computational constraints, the ViCLIP-B is trained
with a batch size of 4096 using 8 A100 GPUs, with a mask ratio set to 0.9. All remaining training parameters
were consistent with those in the main paper. Contrasting the results from Table 11 and 12, it’s evident that the
use of combined coarse and fine-level captions in video-text contrastive learning rendered superior zero-shot
performance than utilizing the coarse level ones alone. It shows the effectiveness of our given video captioning
pipeline.

How the LM impacts motion-related words when summarizing framewise captions into video
ones. From a statistical perspective, generating video captions from frame-level captions using a language
model has a negligible effect on the number of motion-related words captured for video-based understanding. To
illustrate this, we counted the unique verbs (using nltk package) in the captions from a 10m subset of InternVid
under two settings: 1) In the first setting, the captions are video captions generated by the language model. 2) In
the second setting, the captions are frame-wise ones from BLIP2 and tag2text. We found that the number of
unique verbs in the video captions is 109859, whereas for the frame-wise captions it is slightly higher at 109895.
This small discrepancy suggests that almost no motion-related words are lost during the caption generation
process by LM. Therefore, we believe our approach maintains most of the important motion-related information
needed for video understanding.

F.2 MODEL SCALING

We provide a comparison between two versions of ViCLIP, -L (300M) and -B (80M), when trained on InternVid
in Tables 13, 14, and 15. These tables distinctly demonstrate that moving from the base to large model, ViCLIP’s
zero-shot and finetuned video retrieval performance, as well as zero-shot action recognition, can be consistently
improved. These tables clearly demonstrate the benefits of model scaling, and we aim to explore this area further
in future work as resources permit.

F.3 LINEAR PROBING

we present the linear action recognition results on Kinetics-400 in Table 16. It’s noteworthy that ViCLIP,
trained on InternVid-10M-FLT/-200M, delivers a much higher top-1 accuracy compared to when trained on
WebVid-10M (with a more than 10-point increase), mirroring our findings in fine-tuned action recognition
settings. Comparing with other approaches, ViCLIP-L offers performance close to TVTSv2-H/-B, which
incorporate extra learnable parameters for spatiotemporal modeling. Moreover, it significantly outperforms
VideoMAEv2-H. This result can be attributed to the fact that MAE-based methodologies generally underperform
in linear evaluations.
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Method Data MSR-VTT LSMDC DiDeMo MSVD ANet
T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

ViCLIP-B +InternVid-200M 37.4 36.1 16.5 15.2 16.6 22.6 44.3 67.0 13.3 21.7
ViCLIP-L +InternVid-200M 39.3 39.5 18.3 16.6 17.1 25.5 47.3 70.0 13.7 21.6
ViCLIP-B +InternVid-10M-FLT 38.6 38.5 18.5 17.0 16.3 25.0 44.8 67.2 13.0 21.8
ViCLIP-L +InternVid-10M-FLT 42.4 41.3 20.1 16.9 18.4 27.9 49.1 75.1 15.1 24.0

Table 13: Scaling model in zero-shot video retrieval on MSR-VTT, LSMDC, DiDeMo, MSVD, and
ActivityNet.

Method Data MSR-VTT LSMDC DiDeMo MSVD ANet
T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

ViCLIP-B +InternVid-200M 50.7 49.4 25.3 25.4 41.1 40.8 69.0 69.3 37.7 35.8
ViCLIP-L +InternVid-200M 53.7 53.4 29.3 29.3 51.1 50.8 79.9 78.4 52.8 51.1
ViCLIP-B +InternVid-10M-FLT 49.0 49.2 24.4 23.7 40.0 41.4 72.2 73.7 38.3 37.0
ViCLIP-L +InternVid-10M-FLT 52.5 51.8 33.0 33.0 49.4 50.2 77.2 79.0 49.8 48.1

Table 14: Scaling model in fine-tuned video retrieval on MSR-VTT, LSMDC, DiDeMo, MSVD, and
ActivityNet.

F.4 IMPACT OF VIDEOS FROM DIFFERENT LANGUAGE SOURCES

Unlike previous models that are benchmarked mostly on English-based datasets, InternVid encompasses clips
from a variety of languages. This necessitates a further analysis to determine the potential impact this diversity
might have. Currently, we hypothesize that the language of the video may not significantly impact the generated
captions as our deployed image caption models generate English descriptions based purely on input frames.
However, in terms of video distributions, there may exist differences (such as in behaviors, activities, and events)
between videos stemming from different countries due to varied cultural backgrounds.

To examine this hypothesis, we select two 2 million subsets of InternVid: one consisting of only English videos
(InternVid-2M-EN) and another with only Chinese videos (InternVid-2M-CN). It’s important to note that whether
the videos are in English or Chinese, we generate captions in English. Our ViCLIP-B model is pretrained on
these subsets, and we conduct zero-shot experiments as described below. Due to resource constraints, we trained
the ViCLIP-B with a batchsize of 4096 using 8 A100 GPUs with a mask ratio set to 0.9. The remaining training
settings were kept consistent with those outlined in the paper. As given in Table 17 and 18, we find that the model
pretrained with InternVid-2M-EN outperformed that with InternVid-2M-CN notably in both zero-shot action
recognition on K400/600/700 and video retrieval. This result can be attributed to the fact that InternVid-2M-EN
has a data distribution much closer to downstream task data than InternVid-2M-CN, as all used task videos are
sourced from English sources.

F.5 TEXT-TO-VIDEO GENERATION

In Figure 12, we observe that the t2v baseline using both WebVid10M and InternVid-Aes-18M significantly
outperforms others in visual quality and temporal coherence. Note that the t2v baseline using InternVid does
not contain watermarks, which is a data bias in WebVid10M. We give more visual comparisons between our
baseline and other approaches in the supp.

F.6 VIDEO-CENTRIC DIALOGUE SYSTEM

We give qualitative evaluations of VideoChat-ViCLIP in spatial understanding (Figure 13), action recognition
(Figure 14), temporal understanding (Figure 15), video reasoning (Figure 16), and video creative (Figure 17)
tasks.
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Method Data K400 K600 K700
top-1 AVG top-1 AVG top-1 AVG

ViCLIP-B +InternVid-200M 56.58 69.20 53.57 66.20 45.82 58.28
ViCLIP-L +InternVid-200M 59.80 71.09 57.80 69.34 49.30 61.25
ViCLIP-B +InternVid-10M-FLT 58.52 71.11 55.37 68.27 47.09 59.98
ViCLIP-L +InternVid-10M-FLT 64.80 75.70 62.20 73.53 54.30 66.38

Table 15: Scaling model in zero-shot action recognition results on Kinetics 400/600/700.

Method Data K400
top-1 AVG

VideoMAE-B (Tong et al., 2022) Kinetics-400 20.4 -
VideoMAEv2-H (Wang et al., 2023) Kinetics+SthSth+AVA+WebVid2M 25.8 -

TVTS-B (Zeng et al., 2023b) +YT-Temporal-180M 60.8 -
TVTSv2-B (Zeng et al., 2023a) +YT-Temporal-180M+WebVid-2M 70.1 -
TVTSv2-H (Zeng et al., 2023a) +YT-Temporal-180M+WebVid-2M 73.1 -

ViCLIP-L +WebVid-10M 60.0 82.9
ViCLIP-L +InternVid-10M-FLT 71.1 90.4
ViCLIP-L +InternVid-200M 71.7 90.9

Table 16: Linear action recognition results on Kinetics-400.

Method Data K400 K600 K700
top-1 AVG top-1 AVG top-1 AVG

ViCLIP +InternVid-2M-EN 40.20 53.68 37.40 51.00 29.60 42.06
ViCLIP +InternVid-2M-CN 35.9 49.73 33.70 47.05 26.90 39.02

Table 17: Zero-shot action recognition results of ViCLIP using different pretraining sources on
Kinetics 400/600/700.

Method Data MSR-VTT LSMDC DiDeMo MSVD ANet
T2V V2T T2V V2T T2V V2T T2V V2T T2V V2T

ViCLIP +InternVid-2M-EN 24.1 24.1 9.8 9.1 10.3 15.6 31.4 50.5 7.1 12.0
ViCLIP +InternVid-2M-CN 22.2 22.2 8.4 8.7 9.9 15.1 29.6 48.5 5.7 9.7

Table 18: Results of zero-shot video retrieval of ViCLIP using different pretraining sources on
MSR-VTT, LSMDC, DiDeMo, MSVD, and ActivityNet.
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t2v baseline
(+InternVid)

t2v baseline
（WebVid10M)

VideoFusion
（WebVid10M)

VideoCrafter
（WebVid10M)

a bald man in a black t-shirt is playing a guitar

Figure 12: Comparison of samples from t2v baseline to others. We provide zero-shot text-to-video
generation results of different methods trained on both WebVid10M and the additional InternVid-Aes-
18M. The used prompt is: a bald man in a black t-shirt is playing a guitar.

Where is this video taken from? 

The video is taken from an aerial view of a skyscraper-filled city,
with the Shanghai skyline being the prominent feature in the
background. The specific location is Shanghai, China, with several
skyscrapers and a river visible in the scene. Additionally, a few
specific buildings and roads are also seen, such as the Oriental
Pearl Tower and the Huangpu River.

How many buildings in 00:12?

There are several buildings visible in the 00:12 frame, including
several towers and skyscrapers, as well as a river and a city skyline.
The exact number of buildings is difficult to count, as they are
interspersed with other objects and structures in the scene, but
there are several visible. The buildings include the Oriental Pearl
Tower, the World Financial Center, and the IFC Mall, among others.

Figure 13: Video spatial understanding task. This figure demonstrates the spatial understanding
and temporal localization capabilities of VideoChat-ViCLIP trained with our dataset.
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Describe the activity in the video.

The man is playing the guitar and moving around. The video shows
him holding the guitar and playing it.

Figure 14: Video action recognition task. The video comes from Kinetics-400, with the label
”playing guitar”.

Step-by-step describe the video.

First, a woman in a green shirt stands in a kitchen with a
transparent bowl on a table, holding a knife. Next, she uses the
knife to cut a green apple on the table in the kitchen. Then, she
continues to cut the apple, still using the knife. Afterward, she
cuts another apple on the table, holding the knife in her hand.
Finally, she cuts the apple and puts it in a glass blender on the
table. Throughout the video, other apples are visible on the table,
and the woman uses a knife to cut them as well. The background
consists of a wooden table, countertops, and a kitchen. The video
is in slow motion and has a blurry, green-tinted appearance.

What will she do next?

Based on the context, it is reasonable to assume that she may
continue to cut apples and prepare them for juicing.

Figure 15: Temporal understanding task. VideoChat-ViCLIP can easily handle temporal under-
standing tasks and make predictions based on these temporal sequences due to its training on rich
temporal information on InternVid.

What is strange about this video?

It shows a man and a lion interacting in a forest. The man is holding
a lion by the ears, and the lion seems to be okay with being petted
by the man. They seem to be enjoying each other’s company. The video
shows a rare and unusual interaction between a man and a lion, which
is very rare and surprising to see in real life.

Figure 16: Video reasoning task. Our dialogue system has the ability to understand common sense
and make causal inferences based on the contents of the video.

24



Published as a conference paper at ICLR 2024

Write a short poem for this video.

In blue flowers she walks, wind in hair.
White straw hat, peace in her stare.
She breathes, admires the sky.
Tall she stands, with eyes up high.

Figure 17: Video creative task. This figure shows the performance of VideoChat-ViCLIP on creative
and generative tasks within our dataset, like generating poetry based on video content.

25


	Introduction
	Related Work
	InternVid: A Video-Centric Multimodal Dataset
	Data Curation
	Multiscale Video Captioning
	Statistics and Features
	Interleaved Video-Text Data Generation

	ViCLIP: Learning Video-Text Representation at Scale
	Experiments
	Transferable Video Representation Performance
	Other Applications

	Conclusion
	Data Availability Statement
	Limitations & Societal Impact
	More Statistics in InternVid
	InternVid-ICL: Interleaved Video-Text for In-Context Video Learning
	Implementation Details
	Diversity Sampling in Constructing InternVid Subsets
	ViCLIP
	Video Generation Baseline

	More Results
	Effectiveness of Our Multiscale Captioning Approach
	Model Scaling
	Linear Probing
	Impact of Videos from Different Language Sources
	Text-to-Video Generation
	Video-Centric Dialogue System


