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Abstract—Most deep learning based image inpainting ap-
proaches adopt autoencoder or its variants to fill missing regions
in images. Encoders are usually utilized to learn powerful
representational spaces, which are important for dealing with
sophisticated learning tasks. Specifically, in image inpainting
tasks, masks with any shapes can appear anywhere in images
(i.e., free-form masks) which form complex patterns. It is difficult
for encoders to capture such powerful representations under this
complex situation. To tackle this problem, we propose a self-
supervised Siamese inference network to improve the robustness
and generalization. It can encode contextual semantics from full
resolution images and obtain more discriminative representa-
tions. we further propose a multi-scale decoder with a novel
dual attention fusion module (DAF), which can combine both the
restored and known regions in a smooth way. This multi-scale
architecture is benefit for decoding discriminative representations
learned by encoders into images layer by layer. In this way,
unknown regions will be filled naturally from outside to inside.
Qualitative and quantitative experiments on multiple datasets,
including facial and natural datasets (i.e., Celeb-HQ, Pairs Street
View, Places2 and ImageNet), demonstrate that our proposed
method outperforms state-of-the-art methods in generating high-
quality inpainting results.

I. INTRODUCTION

Image inpainting (a.k.a image completion or image hole-
filling) aims at filling missing regions of an image with
plausible contents [1]. It is a fundamental low-level vision
task and can be applied to many real-world applications
such as photo editing, distracting object removal, image-based
rendering, etc [2]–[4]. The core goal of image inpainting is
producing semantically meaningful contents in unknown areas,
which can incorporate smoothly with known areas.

Traditional exemplar-based methods [3], [5], [6] (e.g.,
PatchMatch) can gradually synthesize plausible stationary
contents by copying and pasting similar patches from known
areas. The performances of them are satisfying when dealing
with background inpainting tasks. But non-repetitive and com-
plicated scenes, such as faces and objects are the Waterloo
of these traditional methods because of limited ability of
capturing high-level semantics.

Recently, deep convolutional neural networks (CNNs) have
made great progress in many computer vision tasks [7]–
[10]. Benefiting from the powerful ability of representation

* indicates the correspondence author

Fig. 1. Images with free-form masks including rectangular and irregular
masks and corresponding inpaining results by using our proposed method.

learning of CNNs, many deep learning based methods have
been proposed. These approaches adopt autoencoder or its
variants architecture jointly trained with generative adversarial
networks (GANs) to hallucinate semantically plausible con-
tents in unknown regions [2], [11], [12].

Specifically, masks can be of intricate and irregular patterns
and can appear anywhere in images, which greatly increase
the difficulty of image inpainting. Previous image inpainting
approaches jointly train an encoder and a decoder by some
common loss functions (e.g., reconstruct loss, style loss, etc).
It is difficult for the encoder to learn powerful representational
spaces form images with free-form masks. As a result, these
CNN-based approaches will produce depressing results with
obvious color contrasts and artifacts especially in boundary
areas. A naive way is to design a very deep network to
obtain a larger model capacity. However, it heavily increases
the computational cost and may not learn accurate latent
representational spaces.

For handling this limitation, we propose a self-supervised
Siamese inference network with contrastive learning. As ex-
plored in [13], [14], contrastive learning trains an encoder to
perform a dictionary look − up task. A ’query’ encoded by
one of the encoders should be similar with its corresponding
’key’ (token) that is sampled from data (e.g., image or patch)
and is usually represented by another encoder. We assume that
two identical images with different masks consist a positive
pair while two different images form a negative pair. In order
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to acquire large and consistent dictionaries that are benefit
for representation learning, we follow MoCo [13] to design a
queue dictionary and a momentum-update based key encoder.
In this way, the robustness and the accuracy (i.e., not producing
a noisy representation of the input image) of the encoder can
be improved.

Many previous approaches consider image inpainting as a
conditional image generation task. The roles of the encoder
and decoder are recognizing high-level semantic information
and synthesizing low-level pixels [15], respectively. These
approaches, e.g., PConv [12], LBAM [11] and Yu’s method
[2], focus more on missing areas and synthesize realistic
alternative contents by a well-designed attention architecture
or some effective loss functions. However, due to less attention
to structural consistency, there are obvious color contrasts, or
artificial edge responses, especially in boundaries of results
produced by these methods. In fact, the progress of biology
inspired us that the human visual system is sensitive to dishar-
monious transition regions. Therefore, we pay more attention
to the structural continuity of restored images surrounding
holes while generating texture-rich images.

To properly suppress color discrepancy and artifacts in
boundaries, we propose a novel and independent dual atten-
tion fusion module (DAF) to synthesize pixel-wise smooth
contents, which can be inserted into autoencoder architectures
in a plug-and-play way. The core idea of the fusion module
is to calculate the similarity between the synthesized content
and the known region. Some methods are proposed to address
this problem such as DFNet [16] and Perez’s method [17].
But DFNet lacks flexibility in handing different information
types (e.g., different semantics), hindering more discriminative
representations. Our proposed DAF is developed to adaptively
recalibrate channel-wise feature by taking interdependencies
between channels into account while force CNNs focusing
more on unknown regions. DAF will provide a combining map
to blend restored contents and original images in a smooth
way.

Qualitative and quantitative experiments on multiple
datasets including facial and natural datasets (i.e., Celeb-HQ,
Paris SteetView, Places2 and ImageNet) are utilized to evaluate
our proposed method. The experimental results demonstrate
that our proposed method outperforms state-of-the-art methods
in generating high-quality inpainting results. To sum up, the
main contributions of this paper are as follows:
• We propose a Siamese inference network based on con-

trastive learning for free-form image inpainting. It helps
to improve the robustness and accuracy of representation
learning for complex mask patterns.

• We propose a novel independent dual attention fusion
module that can explore feature interdependencies in
spatial and channel dimensions and provide a combine
map. Smooth contents with rich texture information can
be naturally synthesized from outside to inside.

• Our proposed method achieves smooth inpainting results
with richer texture information on four standard datasets
against state-of-the-art image inpainting methods.

II. RELATED WORK

A. Image Inpainting

Traditional image inpainting methods are mainly diffusion-
based [1] or patch-based [3]. Bertalmio et al. [1] proposed
a algorithm to propagate appearance information from the
neighboring region to the unknown regions. In PatchMatch
[3], a fast nearest neighbor searching algorithm is proposed
to search and paste the most similar image patches from
the known regions. These methods utilize low-level image
features to guide the feature propagation from known image
background or image datasets to corrupted regions. These
methods work well when holes are small and narrow, or there
are plausible matching patches in known region. However,
when suffering from complicated scenes, it is difficult for these
approaches to produce semantically plausible solutions, due to
a lack of semantic understanding of images.

To accurately recover damaged images, many methods [18]–
[22] adopt deep convolutional neural networks (CNNs) [23],
especially generative adversarial networks (GANs) [24] in
image inpainting. Context Encoder [18] formulates image
inpainting as a conditional image generation problem. Global-
Local [25] utilizes two discriminators to improve the quality
of the generated images at different scales, facilitating both
globally and locally consistent image completion. Some works
[20], [26], [27] design a coarse-to-fine framework to solve sub-
problem of image inpainting in different stages, e.g., Edge
connect [26] firstly recovers the edge map of the corrupted
image and generates image textures in the second stage.

B. Self-Supervised Representation Learning

Self-supervised representation learning has shown great
potential recently in many research works [13], [28], [29].
Compared with supervised learning, self-supervised learning
utilizes unlabeled data to learn representations. In MoCo
[13] and SimCLR [29], good representations are learned by
contrasting positive pairs against negative pairs. In MoCo
[13], the authors use a self-supervised learning strategy and
achieve comparable performance with supervised methods.
Self-supervised learning strategy is also used in many other
vision tasks recently. Mustikovela et al. [30] used the self-
supervised learning to viewpoint learning by taking use of
generative consistency and symmetry constraint. Zhan et al.
[31] utilized a mask completion network to predict occlusion
ordering, which is trained with self-supervised learning strat-
egy.

C. Attention Mechanism

Attention mechanism is a hot topic in computer vision and
has been widely investigated in many works [32]–[35]. The
ways to utilize attention mechanism can be coarsely divided
into two categories: spatial attention [32] and channel attention
[35]. Yu et al. [20] proposed a contextual attention to calcu-
late the spatial attention scores between pixels in corrupted
region and known region. DFNet [16] utilizes a spatial alpha
composition map to combine features in the corrupted region
and known region. In this paper, we investigate both spatial
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Fig. 2. The network architecture of our method. The self-supervised Siamese inference network consists of encoder Eq and Ek with contrastive learning.
This inference network encodes the new key representations on-the-fly by using the momentum-updated encoder Ek . We insert the dual attention fusion
module into several decoder layers, thus forming a multi-scale decoder. The inference network is firstly trained on ImageNet with contrastive learning. Then
the pre-trained encoder Eq and the decoder are jointly trained with the fusion module.

attention and channel attention mechanism to further improve
the performance of image inpainting.

III. METHODOLOGY

In this section, we first present our self-supervised Siamese
inference network. Subsequently, the details of the dual at-
tention fusion (DAF) module and learning objectives in our
method are provided. The overall framework of our image
inpainting method is shown in Fig. 2.

A. Self-supervised Siamese inference network

Our proposed self-supervised Siamese inference network
consists of two identical encoders but not sharing parameter
weights [13], [14], [36], noted as Eq and Ek, respectively.
The proposed inference network is trained by contrastive
learning, which can be seen as training an encoder to perform
a dictionary look-up task: a ’query’ encoded by Eq should
be similar with its corresponding ’key’ (i.e., positive key)
represented by another encoder Ek and dissimilar to others
(i.e., negative keys). Two identical images with different masks
are required for the proposed inference network, named as xq
and xk, respectively. Thus, we can obtain a query represen-
tation zq = Eq(xq) and a key representation zk = Ek(xk),
respectively. Followed many previous self-supervised works
[37], [38], the contrastive loss is utilized as self-supervised
objective function for training the proposed inference network
and can be written as:

L = −log
exp(zq.z

+
k /τ)∑k

i=0 exp(zq.zki/τ)
, (1)

where τ is the temperature hyper-parameter and it degrades
into the original softmax when τ is equal to 1. The output
will be less sparse with τ increasing [39]. The τ is set as 0.07
for efficient training process in this work. Specially, this loss,
also known as InfoNCE loss [13], [14], tries to classify zq as
z+
k .

High-dimensional continuous images can be projected into
a discrete dictionary by contrastive learning. There are three
general mechanisms for implementing contrastive learning
(i.e., end-to-end [14], memory bank [40] and momentum
updating [13]), whose main differences are how to maintain
keys and how to update the key encoder. Considering GPU
memory size and powerful feature learning, we follow MoCo
[13] to design a consistent dictionary implemented by queue.
Thus, the key representations of the current batch data are
enqueued into the dictionary while the older representations
are dequeued progressively. The length of the queue is under
control, which enable the dictionary to contain a large number
of negative image pairs. Specially, representation learning can
be beneficial from a dictionary with a large scale negative
pairs. We set the length of the queue as 65536 in this work.

It is worth noting that the encoder Ek is updated by a
momentum update strategy instead of direct back-propagation.
The main reason is that it’s difficult to propagate the gradient
to all keys in the queue. The updating process of Ek can be
formulated as follows:

θk ← mθk + (1−m)θq, (2)

where θq and θk are denoted as the parameters of Eq and Ek,
respectively. θq is updated by back-propagation. m ∈ [0, 1) is
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the momentum coefficient hyper-parameter and set as 0.9 in
this paper. In this way, the encoder Ek can update smoothly
relative to Eq , resulting in a more consistent discrete dictio-
nary.

B. Dual Attention Fusion Module

We now give more details about our proposed dual attention
fusion module (see Fig. 3), which contains a channel attention
mechanism and a spatial attention mechanism. This fusion
module are embedded to the last few layers of the decoder
and output inpainting results with multi-scale resolutions [41],
[42]. Thus, constraints can be imposed on multi-scale outputs
for high-quality results.

Previous CNN-based image inpainting approaches treat
channel-wise features equally, thus hindering the ability of the
representation learning of the network. Meanwhile, high-level
and interrelated channel features can be considered as specific
class responses. For more discriminative representations, we
first build a channel attention module in our proposed fusion
module.

𝐻𝐺𝑃 𝑊𝐷 𝑊𝑈 𝑓

𝐶 × ℎ × 𝑤

𝐶 × ℎ × 𝑤

𝑟𝑒𝑠𝑖𝑧𝑒

𝐹

𝑥𝑞 𝑥𝑞
′

𝐴 𝐵

𝛼 𝑌

𝐶𝑜𝑛𝑣

1 × 1

1 × 1

𝐶𝑜𝑛𝑣

Fig. 3. The network architecture of the dual attention fusion module. It first
predicts an α combine map with the learnable transformation function A.
Then we can obtain final smooth inpainting results with rich texture by the
combine function B.

As shown in Fig. 3, let a feature map F =
[f1, · · · , fc, · · · , fC ] be one of the inputs of the fusion module,
whose channel number is c and size is h × w. The channel
descriptor can be acquired from the channel-wise global spatial
information by global averaging pooling. Then we can obtain
the channel-wise statistics zc ∈ Rc by shrinking F :

zc = HGP (xc) =
1

h× w

h∑
i=1

w∑
j=1

fc(i, j), (3)

where zc(i, j) is the c-th element of z. HGP means the global
pooling function.

In order to fully explore channel-wise dependencies from
the aggregated information by using global average pooling,
we introduce a gating mechanism. As illustrated in [35], [43],
the sigmoid function can be used as a gating function:

ω = f(WUδ(WDz)), (4)

where f(·) and δ(·) are the sigmoid gating and ReLU func-
tions, respectively. WD and WU are the weight sets of Conv
layers. They set channel number as C/r and C, respectively.
Finally, the channel statistics ω is acquired and used to rescale
the input fc:

f̂c = wc · fc, (5)

where wc and fc are the scaling factor and feature map of the
c-th channel, respectively.

The long-range contextual information is essential for dis-
criminant feature representations. We propose a spatial atten-
tion module that forms the final part of the proposed fusion
module. Given an input image with a mask xq , we first
get xq

′
that matches the size of the re-scaled feature map

F̂ ∈ Rc×h×w,
xq

′
= (WCxq) ↓, (6)

where WC and ↓ are the weight set of a 1× 1 convolutional
layer and down-scaled module, respectively.

Then the combining map α ∈ RC×h×w is given by,

α = f(A(WDF̂ , xq
′
)), (7)

where WD is the weight set of a 1 × 1 convolutional layer.
It sets channel number of F̂ to be same with xq

′
. A is a

learnable transformation function implemented by three 3× 3
convolutional layers. WDF̂ and xq

′
are first concatenated and

then fed into convolutional layers. f(·) is the sigmoid function
that can make α an attention map to some extent.

The final inpainting result Ŷ is obtained by,

Ŷ = B(α,WDF̂ , xq
′
) = α�WDF̂ + (1− α)� xq

′
, (8)

where � and B denote the Hadamard product and combine
function, respectively. In this way, we can eliminate obvious
color contrasts and artifacts especially in boundary areas and
get a smoother inpainting results with richer texture.

C. Loss Functions
As explored in [11], [16], [22], for synthesizing richer

texture details and correct semantics, the element-wise recon-
struction loss, the perceptual loss [44], the style loss, the total
variation loss and the adversarial loss are used to train our
proposed method.

Reconstruction Loss. It is calculated as L1-norm between
the inpainting result Ŷ and the target image Y ,

Lrec = ||Y − Ŷ ||1. (9)

Perceptual Loss. Due to lacking high-level semantics by
only using the element-wise loss, we introduce the perceptual
loss,

Lper =
1

N

N∑
i=1

||Φi(Y )− Φi(Ŷ )||1, (10)

where Φ is the VGG-16 network that pre-trained on ImageNet
[45]. Φi(·) outputs feature maps of the i-th pooling layer. We
select pool−1, pool−2 and pool−3 layers of the pre-trained
VGG-16 in this work.

Style Loss. For getting richer textures, we also adopt the
style loss defined on the feature maps produced by the pre-
trained VGG-16. Followed [11], [12], the style loss can be
calculated as L1-norm between the Gram matrices of the
feature maps,

Lstyle =
1

N

N∑
i=1

1

Ci · Ci
||Φi(Y )(Φi(Y ))T−Φi(Ŷ )(Φi(Ŷ ))T ||1,

(11)
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(a) Input (b) PConv (c) CA (d) DFNet (e) LBMA (f) Ours (g) GT

Fig. 4. Qualitative experiments compared with state-of-the-arts on four datasets with free-form masks. (a) is the input with irregular mask. (b), (c), (d), (e)
and (f) are the results generated by PConv [12], CA [15], DFNet [16], LBMA [11] and ours method respectively from left to right. (g) is the ground truth.

where Ci denotes the channel number of the feature map at
i-th layer in the pre-trained VGG-16.

Total Variation Loss. It is a smoothing penalty term and
calculated on the region of 1-pixel dilation of the unknown
regions.

Ltv =
1

N

∑
(i,j),(i,j+1)∈Ω

||Ŷ i,j+1 − Ŷ i,j ||1

+
1

N

∑
(i,j),(i+1,j)∈Ω

||Ŷ i+1,j − Ŷ i,j ||1,
(12)

where Ω means the unknown regions.
Adversarial Loss. We introduce the adversarial loss for

improving the visual quality of the generated inpainting image.
Followed [46], it can be formulated as,

Ladv = min
G

max
D

EY∼PY
D(Y )− EŶ∼PŶ

D(Ŷ )

+ λEY ′∼P
Y

′ ((||∇Y ′D(Y
′
||)2)− 1)2,

(13)

where D(·) means the discriminator. Y
′

is the resized version
that sampled from Ŷ and Y by interpolation with a random
scale factor. We set λ as 10 in this work.

Model Objective. Taking the above loss functions and the
multi-scale network architecture into account, we group them

into two categories: Structure Loss and Texture Loss,
respectively.

Lk
struct = λrecLk

rec, (14)

where λrec means the weight factor and set as 6. Lk
struct is

calculated as Lrec at the k-th layer of the decoder (1st means
the last decoder layer).

The Texture Loss is given by,

Lk
text = λperLk

per + λstyleLk
style + λtvLk

tv + λadvLk
adv, (15)

where λper, λstyle, λtv , λadv are trade-off factors and set as
0.1, 240, 0.1 and 0.001 respectively in this work.

Finally, the total model objective is given by,

Ltotal =
1

|P |
∑
k∈P

Lk
struct +

1

|Q|
∑
k∈Q

Lk
text, (16)

where both P and Q are the selected decoder layer sets that
imposed constraints. We select P as {1, 2, 3, 4, 5, 6} and Q as
{1, 2, 3} respectively for better quality inpainting results. Note
that 1 represents the outermost layer.

IV. EXPERIMENTS

To demonstrate the superiority of our approach against
state-of-the-art image inpainting methods, both quantitative
and qualitative experiments are conducted. In this section, we
will introduce the details of our experimental settings and the
experimental results one by one.
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A. Experiments Settings

Datasets. We conduct experiments on several public
datasets including:

- CelebA-HQ [41], a dataset that contains 30,000 high-
quality face images.

- Places2 [47], a dataset that contains over 8,000,000
images from over 365 scenes collected from the natural
world.

- Paris Street View [48], a dataset which consists of 15,000
images collected from street views of Paris

- ImageNet [45], a large visual database containing more
than 14 million images of the world.

For Places2, Pairs Street View and ImageNet, we use their
origin splits for validation and testing. As for CelebA-HQ, we
randomly select 28000 images for training and the rest for
testing.

(a) GT (b) Input (c) Ours

Fig. 5. Example results predicted by our proposed method on CelebA-HQ.

Implementation Details. All the images are resized to
256 × 256 during training and testing. Data augmentation
is utilized during training such as filpping. Masks are free-
form including rectangular and irregular and automatically
generated on-the-fly during training [22]. Taken as a whole,
our proposed method can be broken down into two stages. In
the first stage, the inference network is trained on ImageNet
through contrastive learning until convergence. And in the
next stage, the pre-trained encoder and the decoder are jointly
trained with the fusion module. We use the SGD optimizer
with the learning rate as 0.015 for training the Siamese
inference network while use the Adam optimizer with the
learning rate as 10−4 for jointly training the encoder and
decoder. All the results are reported directly from the trained
model without any additional post-processing.

Method Mask Type L1 error† PSNR‡ SSIM‡ FID†
PConv [12]

rectangular

0.0357 22.83 0.7737 26.45
CA [15] 0.0372 22.58 0.7800 21.78

DFNet [16] 0.0349 22.95 0.7789 26.73
LBMA [11] 0.0350 23.08 0.7817 24.01

Ours 0.0332 23.52 0.7928 21.42
PConv [12]

irregular

0.0202 26.65 0.9224 12.03
CA [15] 0.0384 22.08 0.8182 28.69

DFNet [16] 0.0180 27.40 0.9343 10.12
LBMA [11] 0.0179 27.43 0.9351 10.56

Ours 0.0178 27.54 0.9350 9.15

TABLE I
QUANTITATIVE COMPARISON ON VALIDATION IMAGES OF PLACES2 WITH

BOTH RECTANGLE AND IRREGULAR MASKS. †LOWER IS BETTER.
‡HIGHER IS BETTER.

B. Quantitative Results

We conduct quantitative experiments on the Places2 dataset
with free-form masks. The L1 loss, peak signal-to-noise
ratio (PSNR), structural similarity index (SSIM) and Fre

′
chet

Inception Distance (FID) are used for evaluation metrics.
The ability of the model to recover the original content in

the hole can be roughly reflected by L1 error. PSNR and
SSIM measure the similarity between the inpainting result and
the target image. As for FID, it can measure the Wasserstein-2
distance between real and inpainting images through the pre-
trained Inception-V3.

Table I shows the performance of our proposed method
against other state-of-the-art methods. Our method outper-
forms all the other compared methods in four metrics. The
main reasons are that 1): images with free-form masks dra-
matically increase the difficulty of image inpainting, thus
hindering the ability of the representation learning of the
encoder; 2): exiting methods firstly take generating realistic
images into account but ignore the structural consistency of
the generated image.

C. Qualitative Results

We compare our proposed method with state-of-the-art
methods in term of visual and semantic coherence. We conduct
qualitative experiments on the test set of four datasets with
free-form masks. As shown in Fig. 4, we mask the test images
with irregular masks. It can be seen that PConv, CA, DFNet
and LBMA tend to synthesise blurred and unsmooth final re-
sults. Our proposed method can generate smoother inpainting
results with reasonable semantics and richer textures with the
help of the self-supervised Siamese inference network and the
DAF module. It demonstrates that our proposed method is
superior to the comparison methods in terms of consistent
structures and colors. Furthermore, as shown in Fig. 5, we also
conduct experiments on the test images of CelebA-HQ with
typical rectangular squares to evaluate the inpainting ability of
our proposed method. Our method can generate face images
with consistent colors and structures.

D. Ablation Study

The multi-scale decoder can progressively refine the inpaint-
ing results at each scale. The experiments are conducted on test
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contrastive learning × X × X
DAF × × X X

L1 error† 0.0192 0.0190 0.0186 0.0178
PSNR‡ 26.98 27.13 27.21 27.54
SSIM‡ 0.9282 0.9302 0.9315 0.9351
FID† 12.62 12.56 11.14 9.15

TABLE II
ABLATION STUDY EXPERIMENTS ON ON VALIDATION IMAGES OF

PLACES2. †LOWER IS BETTER. ‡HIGHER IS BETTER.

images of CelebA-HQ. Then we visualize the images predicted
by decoder at several scales (i.e., from 1st to 5th). As shown
in Fig. 6, it demonstrates that this multi-scale architecture
is benefit for decoding learned representations into generated
images layer by layer.

We also investigate the effectiveness of different compo-
nents of the proposed method. We train several variants of
the proposed method: remove the self-supervised Siamese
inference network (denote as contrastive learning) and/or the
DAF module. As shown in Table II, it clearly demonstrates that
the inference network and the DAF module play important
roles in determining the performance. As shown in Fig. 7,
the uncompleted models usually generate obvious artifacts,
especially in boundaries while our full model can suppress
color discrepancy and artifacts in boundaries and produce
realistic inpainting results.

(a) (b) (c) (d) (e) (f)

Fig. 6. Images produced by the multi-scale decoder. (a) is the input with
a rectangle mask. (b) is the final inpainting result. (c), (d), (e) and (f) are
outputs at multi-scales.

(a) (b) (c) (d) (e) (f) 

Fig. 7. Images produced by the variants of our proposed method. (a) is
the input with irregular masks. (e) is the inpainting result generated by the
full model. (b), (c) and (d) are generated by the model without DAF and
contrastive learning, the model only with contrastive learning and the model
only with DAF respectively. (f) is the ground truth.

V. CONCLUSION

In this paper, we propose a novel two-stage paradigm image
inpainting method to generate smoother results with reason-
able semantics and richer textures. Specifically, the proposed

method boosts the ability of the representation learning of the
inference network by using contrastive learning. We further
design a novel dual attention fusion module to form a multi-
scale decoder, which can be embedded into decoder layers in
a plug-and-play way. Experiments on CelebA-HQ, Places2,
Pairs Street View and ImageNet show the superiority of our
proposed method in generating smoother, more coherent and
fine-detailed results.
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